exercises/solutions/sol01.tex
author Eugen Sawin <sawine@me73.com>
Sun, 10 Jun 2012 05:35:08 +0200
changeset 20 93fd38efa60f
parent 3 ae5b1e3baf07
permissions -rw-r--r--
Added some solutions.
sawine@2
     1
\documentclass[a4paper, 10pt, pagesize, smallheadings]{article}
sawine@0
     2
\usepackage{graphicx}
sawine@0
     3
%\usepackage[latin1]{inputenc}
sawine@0
     4
\usepackage{amsmath, amsthm, amssymb}
sawine@0
     5
\usepackage{typearea}
sawine@0
     6
\usepackage{algorithm}
sawine@0
     7
\usepackage{algorithmic}
sawine@0
     8
\usepackage{fullpage}
sawine@0
     9
\usepackage{mathtools}
sawine@0
    10
\usepackage[all]{xy}
sawine@4
    11
\addtolength{\voffset}{-40pt}
sawine@0
    12
\title{CSP Exercise 01 Solution}
sawine@0
    13
\author{Eugen Sawin}
sawine@0
    14
\renewcommand{\familydefault}{\sfdefault}
sawine@0
    15
\newcommand{\E}{\mathcal{E}}
sawine@3
    16
\newcommand{\R}{\mathcal{R}}
sawine@3
    17
sawine@0
    18
%\include{pythonlisting}
sawine@0
    19
sawine@0
    20
\pagestyle{empty}
sawine@0
    21
\begin{document}
sawine@0
    22
\maketitle
sawine@0
    23
sawine@2
    24
\section*{Exercise 1.1}
sawine@0
    25
\begin{tabular}{|c|c|c||c|c|c||c|c|c|}
sawine@0
    26
  \hline
sawine@1
    27
  5&3&6 &4&7&2 &8&1&9 \\ \hline
sawine@1
    28
  4&2&1 &6&9&8 &5&7&3 \\ \hline
sawine@1
    29
  7&8&9 &1&5&3 &4&6&2 \\ \hline\hline
sawine@0
    30
sawine@1
    31
  8&6&3 &9&2&4 &1&5&7 \\ \hline
sawine@1
    32
  1&7&5 &8&3&6 &9&2&4 \\ \hline
sawine@1
    33
  2&9&4 &5&1&7 &6&3&8 \\ \hline\hline
sawine@0
    34
sawine@1
    35
  3&1&8 &2&4&5 &7&9&6 \\ \hline
sawine@1
    36
  9&4&7 &3&6&1 &2&8&5 \\ \hline
sawine@1
    37
  6&5&2 &7&8&9 &3&4&1 \\ \hline
sawine@2
    38
\end{tabular} \\\\
sawine@2
    39
I have applied following strategies to solve the puzzle:
sawine@2
    40
\begin{itemize}
sawine@2
    41
  \item look for most contrained blocks, rows and columns
sawine@2
    42
  \item look for values with most resolved positions
sawine@2
    43
  \item annotate cells with consistent values
sawine@2
    44
  \item look for inconsistent connections between cell annotations
sawine@2
    45
\end{itemize}
sawine@2
    46
sawine@2
    47
\section*{Exercise 1.2}
sawine@3
    48
(a) $R_{x,y} \bowtie S_{y,z} = \{(a,b,a),(a,b,c)\}$\\\\
sawine@3
    49
(b) $\sigma_{z=c}(R_{x,y} \bowtie S_{y,z}) = \{(a,b,c)\}$\\\\
sawine@3
    50
(c) $\pi_x(R_{x,y}) = \{(a)\}$\\\\
sawine@4
    51
(d) $R_{x,y} \circ S_{y,z} = \{(a,a),(a,c)\}$
sawine@2
    52
sawine@3
    53
\section*{Exercise 1.3}
sawine@3
    54
(a) By definition holds
sawine@3
    55
\begin{align}
sawine@3
    56
  R \circ (S \cup T) &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in R \text{ and } (y,z) \in (S \cup T)\}\\
sawine@3
    57
  R \circ S &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in R \text{ and } (y,z) \in S\}\\
sawine@3
    58
  R \circ T &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in R \text{ and } (y,z) \in T\}
sawine@4
    59
\end{align}\setcounter{equation}{0}\\
sawine@3
    60
The union of (2) and (3) gives us the set of all $(x,y) \in R$ with either $(y,z) \in S$ or $(y,z) \in T$, from which follows that $(y,z) \in (S \cup T)$, making it equal to (1). \qed\\\\
sawine@4
    61
(b) By definition holds
sawine@4
    62
\begin{align}
sawine@4
    63
  -R &= \{(x,y) \in X^2 \mid (x,y) \notin R\}\\
sawine@4
    64
  (-R)^{-1} &= \{(y,x) \in X^2 \mid (x,y) \in -R\}\\
sawine@4
    65
  -(R^{-1}) &= \{(x,y) \in X^2 \mid (x,y) \notin R^{-1}\}\\
sawine@4
    66
  -(R^{-1}) &= \{(x,y) \in X^2 \mid (y,x) \notin R\}
sawine@4
    67
\end{align}\setcounter{equation}{0}\\
sawine@4
    68
We've obtained (4) by applying the converse definition on (3). From the definition of $-R$ (1) follows that $(x,y) \in -R$ iff $(x,y) \notin R$, and therefore we see that (2) and (4) define equal sets. \qed\\\\
sawine@3
    69
(c) By definition holds
sawine@3
    70
\begin{align}
sawine@3
    71
  (R \circ S)^{-1} &= \{(z,x) \in X^2 \mid \exists{y \in X}: (x,y) \in R \text{ and } (y,z) \in S\}\\
sawine@3
    72
  S^{-1} \circ R^{-1} &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in S^{-1} \text{ and } (y,z) \in R^{-1}\}\\
sawine@3
    73
  S^{-1} \circ R^{-1} &= \{(x,z) \in X^2 \mid \exists{y \in X}: (y,x) \in S \text{ and } (z,y) \in R\}
sawine@4
    74
\end{align}\setcounter{equation}{0}\\
sawine@4
    75
We've obtained (3) by applying the converse definition on (2). After some variable juggling we see that (1) and (3) define equal sets. \qed\\\\
sawine@4
    76
(d) By definition holds
sawine@4
    77
\begin{align}
sawine@4
    78
  R \circ S &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in R \text{ and } (y,z) \in S\}\\
sawine@4
    79
  (R \circ S) \cap T^{-1} &= (R \circ S) \cap \{(y,x) \in X^2 \mid (x,y) \in T\}\\
sawine@4
    80
  (R \circ S) \cap T^{-1} &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in R \text{ and } (y,z) \in S \text{ and } (z,x) \in T\}\\
sawine@4
    81
  (S \circ T) \cap R^{-1} &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in S \text{ and } (y,z) \in T \text{ and } (z,x) \in R\}
sawine@4
    82
\end{align}\\
sawine@4
    83
We've obtained (3) by directly applying intersection within the set comprehension of (2). It follows that\\
sawine@4
    84
\begin{align}
sawine@4
    85
  (R \circ S) \cap T^{-1} = \emptyset &\iff \forall{x,y,z \in X}: (x,y) \notin R \text{ or } (y,z) \notin S \text{ or } (z,x) \notin T\\
sawine@4
    86
  \text{ and } (S \circ T) \cap R^{-1} = \emptyset &\iff \forall{x,y,z \in X}: (x,y) \notin S \text{ or } (y,z) \notin T \text{ or } (z,x) \notin R
sawine@4
    87
\end{align}\\
sawine@4
    88
As we can see, the intersections form a ring-like relationship between the sets' tuples $(...,R, S, T, R,...)$. After some variable reordering, we see that both intersections are empty iff there is no ring-like relationship between any tuples of the three sets. \qed
sawine@0
    89
\end{document}