diff -r ae5b1e3baf07 -r eb6514da85e2 exercises/solutions/sol01.tex --- a/exercises/solutions/sol01.tex Fri Apr 27 02:02:08 2012 +0200 +++ b/exercises/solutions/sol01.tex Fri Apr 27 19:03:09 2012 +0200 @@ -8,7 +8,7 @@ \usepackage{fullpage} \usepackage{mathtools} \usepackage[all]{xy} -\addtolength{\voffset}{-25pt} +\addtolength{\voffset}{-40pt} \title{CSP Exercise 01 Solution} \author{Eugen Sawin} \renewcommand{\familydefault}{\sfdefault} @@ -48,7 +48,7 @@ (a) $R_{x,y} \bowtie S_{y,z} = \{(a,b,a),(a,b,c)\}$\\\\ (b) $\sigma_{z=c}(R_{x,y} \bowtie S_{y,z}) = \{(a,b,c)\}$\\\\ (c) $\pi_x(R_{x,y}) = \{(a)\}$\\\\ -(d) $R_{x,y} \circ S_{y,z} = \{(a,a),(a,c)\}$\\\\ +(d) $R_{x,y} \circ S_{y,z} = \{(a,a),(a,c)\}$ \section*{Exercise 1.3} (a) By definition holds @@ -56,15 +56,34 @@ R \circ (S \cup T) &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in R \text{ and } (y,z) \in (S \cup T)\}\\ R \circ S &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in R \text{ and } (y,z) \in S\}\\ R \circ T &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in R \text{ and } (y,z) \in T\} -\end{align} +\end{align}\setcounter{equation}{0}\\ The union of (2) and (3) gives us the set of all $(x,y) \in R$ with either $(y,z) \in S$ or $(y,z) \in T$, from which follows that $(y,z) \in (S \cup T)$, making it equal to (1). \qed\\\\ -(b) $-R$ was nowhere defined yet.\\\\ +(b) By definition holds +\begin{align} + -R &= \{(x,y) \in X^2 \mid (x,y) \notin R\}\\ + (-R)^{-1} &= \{(y,x) \in X^2 \mid (x,y) \in -R\}\\ + -(R^{-1}) &= \{(x,y) \in X^2 \mid (x,y) \notin R^{-1}\}\\ + -(R^{-1}) &= \{(x,y) \in X^2 \mid (y,x) \notin R\} +\end{align}\setcounter{equation}{0}\\ +We've obtained (4) by applying the converse definition on (3). From the definition of $-R$ (1) follows that $(x,y) \in -R$ iff $(x,y) \notin R$, and therefore we see that (2) and (4) define equal sets. \qed\\\\ (c) By definition holds \begin{align} (R \circ S)^{-1} &= \{(z,x) \in X^2 \mid \exists{y \in X}: (x,y) \in R \text{ and } (y,z) \in S\}\\ S^{-1} \circ R^{-1} &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in S^{-1} \text{ and } (y,z) \in R^{-1}\}\\ S^{-1} \circ R^{-1} &= \{(x,z) \in X^2 \mid \exists{y \in X}: (y,x) \in S \text{ and } (z,y) \in R\} -\end{align} -where (6) is (5) transformed by application of the definition of the converse of a relation. After some variable juggling we see that (4) and (6) are equal sets. \qed\\\\ -(d) Todo +\end{align}\setcounter{equation}{0}\\ +We've obtained (3) by applying the converse definition on (2). After some variable juggling we see that (1) and (3) define equal sets. \qed\\\\ +(d) By definition holds +\begin{align} + R \circ S &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in R \text{ and } (y,z) \in S\}\\ + (R \circ S) \cap T^{-1} &= (R \circ S) \cap \{(y,x) \in X^2 \mid (x,y) \in T\}\\ + (R \circ S) \cap T^{-1} &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in R \text{ and } (y,z) \in S \text{ and } (z,x) \in T\}\\ + (S \circ T) \cap R^{-1} &= \{(x,z) \in X^2 \mid \exists{y \in X}: (x,y) \in S \text{ and } (y,z) \in T \text{ and } (z,x) \in R\} +\end{align}\\ +We've obtained (3) by directly applying intersection within the set comprehension of (2). It follows that\\ +\begin{align} + (R \circ S) \cap T^{-1} = \emptyset &\iff \forall{x,y,z \in X}: (x,y) \notin R \text{ or } (y,z) \notin S \text{ or } (z,x) \notin T\\ + \text{ and } (S \circ T) \cap R^{-1} = \emptyset &\iff \forall{x,y,z \in X}: (x,y) \notin S \text{ or } (y,z) \notin T \text{ or } (z,x) \notin R +\end{align}\\ +As we can see, the intersections form a ring-like relationship between the sets' tuples $(...,R, S, T, R,...)$. After some variable reordering, we see that both intersections are empty iff there is no ring-like relationship between any tuples of the three sets. \qed \end{document}