
CSP Exercise 04 Solution

Eugen Sawin

June 4, 2012

Exercise 4.1

(a) The zebra problem is the constraint network N = 〈V,D,C〉 with

V =(english, spanish, ukrainian, norwegian, japanese,

red, green, ivory, yellow, blue

dog, snail, fox, horse, zebra

coffee, tea,milk, juice, water

oldgold, kools, chesterfield, lucky, parliament)

D =(Dv)v∈V where Dv =

 {1}, if v = norwegian
{3}, if v = milk
{1, 2, 3, 4, 5}, otherwise

Req ={(a, a) | a ∈ N}
Rnext ={(a, b) | a, b ∈ N, |a− b| = 1}

Rrightof ={(a+ 1, a) | a ∈ N}
C ={Rv1,v2∈{english,spanish,ukrainian,norwegian,japanese} = (Dv1 ×Dvj) \Req,

Rv1,v2∈{red,green,ivory,yellow,blue} = (Dv1 ×Dvj) \Req,

Rv1,v2∈{dog,snail,fox,horse,zebra} = (Dv1 ×Dvj) \Req,

Rv1,v2∈{coffee,tea,milk,juice,water} = (Dv1 ×Dvj) \Req,

Rv1,v2∈{oldgold,kools,chesterfield,lucky,parliament} = (Dv1 ×Dvj) \Req,

Renglish,red = (Denglish ×Dred) ∩Req,

Rspanish,dog = (Dspanish ×Ddog) ∩Req,

Rcoffee,green = (Dcoffee ×Dgreen) ∩Req,

Rukrainian,tea = (Dukrainian ×Dtea) ∩Req,

Roldgold,snail = (Doldgold ×Dsnail) ∩Req,

Rkool,yellow = (Dkool ×Dyellow) ∩Req,

Rlucky,juice = (Dlucky ×Djuice) ∩Req,

Rjapanese,parliament = (Djapanese ×Dparliament) ∩Req,

Rchesterfield,fox = (Dchesterfield ×Dfox) ∩Rnext,

Ryellow,horse = (Dyellow ×Dhorse) ∩Rnext,

Rnorwegian,blue = (Dnorwegian ×Dblue) ∩Rnext,

Rgreen,ivory = (Dgreen ×Divory) ∩Rrightof}

To answer the questions, the Norwegian drinks water and the Japanese owns the zebra. I have added the
corresponding problem file in XCSP2.1 format to my project repository (xcsp2 examples/zebra.xml).

(b) See figure 1 (names are abbreviated).

1

eng spa ukr nor jap

red gre ivo yel blu

dog sna fox hor zeb

cof tea mil jui wat

old koo che luc par

Figure 1: (3.1b) primal constraint graph of N

(c) No, N is not arc-consistent. We provide the arc-consistent constraint network N ′ = 〈V,D′, C〉 with

D′v =

{1}, if v = norwegian
{3}, if v = milk
{2}, if v = blue
{3, 4}, if v = ivory
{4, 5}, if v ∈ {coffee, green}
{2, 3, 4}, if v = horse
{3, 4, 5}, if v ∈ {english, red}
{2, 4, 5}, if v ∈ {ukrainian, tea}
{2, 3, 4, 5}, if v ∈ {spanish, japanese, dog, parliament}
{1, 2, 4, 5}, if v ∈ {juice, water, lucky}
{1, 3, 4, 5}, if v ∈ {yellow, kool}
{1, 2, 3, 4, 5}, otherwise

That makes 32 domain values less. I’ve spent an hour and this, where my solver spent 1.5ms on this task.
I’m glad we have the power to build machines for doing such tedious work instead of doing it by hand.

Exercise 4.2

(a) We show that Sol(C) = Sol(C′) by contradiction.
Let C = 〈V,D,C〉 and C′ = 〈V,D′, C〉. By definition each variable assignment a(vi) must be in its

variable domain Di, i.e., a(vi) ∈ Di. Therefore, a reduction of domains can only yield a network with less
solutions. Since AC3 reduces domains, there can not be more solutions for C′, i.e., Sol(C′) ⊆ Sol(C).

Assume that solution a ∈ Sol(C) is lost after the domain reduction by AC3, i.e., a /∈ Sol(C′). WLOG it
follows that at some iteration of AC3 the value a(vi) was removed from the domain D′i, so it holds a(vi) /∈ D′i.
By the definition of the revise function of AC3, it holds that D′i ← Di ∩ πi(Rij ./ Dj). Since a(vi) is in Di

but not in D′i, it follows that a(vi) /∈ πi(Rij ./ Dj) =⇒ (a(vi), a(vj)) /∈ (Rij ./ Dj).
The join Rij ./ Dj represents the set of all consistent assignments of variable vj over the relation Rij .

With (a(vi), a(vj)) /∈ (Rij ./ Dj) it follows that variable assignments (a(vi), a(vj)) are not consistent with
the constraint over Rij . It contradicts with our assumption that a ∈ Sol(C), because a solution must satisfy
all constraints of the network. We have shown that there is no solution a ∈ Sol(C), such that a /∈ Sol(C′).

(b) To show that AC3 produces an arc-consistent network C′ we consider three cases. The first case is
trivial, given an arc-consistent network the revise function does not remove any domain values and therefore
does not modify the network.

Let C be a network with some not arc-consistent Rij , i.e., there is some assignment a with a(vi) ∈ Di,
a(vj) ∈ Dj and (a(vi), a(vj)) /∈ (Rij ./ Dj). Initially, AC3 does revise all variable pairs (vi, vj) and (vj , vi)
with (vi, vj) in some constraint’s scope (Rij). It follows that AC3 does revise (vi, vj) in respect of Rij

in some iteration and reduces D′i ← Di ∩ πi(Rij ./ Dj). Because (a(vi), a(vj)) /∈ (Rij ./ Dj) implies
a(vi) /∈ πi(Rij ./ Dj), it holds that a(vi) /∈ D′i. This reduces the initial arc-inconsitency of vi relative to vj .

By the domain value reduction, AC3 can introduce new not arc-consistent constraints. Let a(vi) ∈ Di be
a value, that was removed by the revise function for constraint Rij . Since the revise function changed Di,
AC3 will again revise all variable pairs (vk, vi) with k 6= i, k 6= j for all constraints Rki. This removes all
inconsistent values for all domains Dk,i.e., all a(vk) ∈ Dk with a(vk) /∈ πk(Rki ./ Di) are removed from Dk.
All other constraints Rlm with m 6= i are not directly affected by the reduced domain Di and can therefore
not become not arc-consistent by the revisal of (vi, vj).

We have shown, that all initial not arc-consistent constraints are made arc-consistent and the same holds
for all newly introduced inconsistencies by the domain reduction. It follows that all remaining domains of C′
form an arc-consistent network.

(c) All trivial assignments with complexity of O(1) are left out of this analysis. Further it is assumed that
set containment can be tested in O(1), while is is only true for fully expanded sets with exponential space
requirements. We can, however, archieve O(1)∗ using hash tables and amortized analysis in linear space. The
natural tree-based approach yields O(log n). For the queue, we assume a stack is used with O(1) insertion
and removal (last inserted value). Let n be the number of variables, all domains have size ≤ k and e is the
number of constraints.

The initialisation of the counters consists of an iteration over all constraints Rij and values ai ∈ Di,
aj ∈ Dj , this takes Θ(e · k2) time.

Next we initialise the set S[vj , aj] with the supported tuples, adjust the counters and move unsupported
tuples into Q for each constraint Rij and values ai ∈ Di, aj ∈ Dj , again this takes Θ(e ·k2) time. We notice
that each set S[vj , aj] and Q have at most e · k elements, also the counter value for any variable-value pair
is ≤ e · k.

The while loop needs some special treatment based on the observation that |S[vj , aj]|+ |Q| = e · k and
others. But, due to limited time, I have to skip this part this time.

