exercises/solutions/sol04.tex
author Eugen Sawin <sawine@me73.com>
Fri, 01 Jun 2012 04:10:58 +0200
changeset 10 c30d95faea4a
parent 3 exercises/solutions/sol01.tex@a1541a49ebb1
child 11 5112f3e2f3d2
permissions -rw-r--r--
Added ex4.1a.
sawine@1
     1
\documentclass[a4paper, 10pt, pagesize, smallheadings]{article}
sawine@1
     2
\usepackage{graphicx}
sawine@1
     3
%\usepackage[latin1]{inputenc}
sawine@1
     4
\usepackage{amsmath, amsthm, amssymb}
sawine@1
     5
\usepackage{typearea}
sawine@1
     6
\usepackage{algorithm}
sawine@1
     7
\usepackage{algorithmic}
sawine@1
     8
\usepackage{fullpage}
sawine@1
     9
\usepackage{mathtools}
sawine@1
    10
\usepackage{multirow}
sawine@1
    11
\usepackage[all]{xy}
sawine@10
    12
\addtolength{\voffset}{-20pt}
sawine@10
    13
\title{Spieltheorie \"Ubung 4}
sawine@1
    14
\author{Eugen Sawin}
sawine@1
    15
\renewcommand{\familydefault}{\sfdefault}
sawine@1
    16
\newcommand{\E}{\mathcal{E}}
sawine@1
    17
\newcommand{\R}{\mathcal{R}}
sawine@1
    18
sawine@1
    19
%\include{pythonlisting}
sawine@1
    20
sawine@1
    21
\pagestyle{empty}
sawine@1
    22
\begin{document}
sawine@1
    23
\maketitle
sawine@2
    24
%
sawine@10
    25
\section*{Aufgabe 4.1}
sawine@10
    26
(a) Das Picknickspiel ist das Spiel $G=\langle\{1,2\},(A,B),(u_i)\rangle$ mit $A=B=\{p_1,p_2,p_3,p_4,p_5\}$ und das $(u_i)$ definiert durch die folgende Matrix.\\\\
sawine@1
    27
\begin{tabular}{rr|c|c|c|c|c|}
sawine@1
    28
 \multicolumn{1}{r}{}
sawine@1
    29
 & \multicolumn{1}{r}{}
sawine@1
    30
 & \multicolumn{5}{c}{\emph{Spieler 2}} \\
sawine@1
    31
sawine@1
    32
 \multicolumn{1}{r}{}
sawine@1
    33
 & \multicolumn{1}{r}{}
sawine@10
    34
 & \multicolumn{1}{c}{$p_1$}
sawine@10
    35
 & \multicolumn{1}{c}{$p_2$}
sawine@10
    36
 & \multicolumn{1}{c}{$p_3$}
sawine@10
    37
 & \multicolumn{1}{c}{$p_4$}
sawine@10
    38
 & \multicolumn{1}{c}{$p_5$} \\
sawine@1
    39
sawine@1
    40
 \cline{3-7}
sawine@1
    41
 \multirow{5}{*}{\emph{Spieler 1}}
sawine@10
    42
  & $p_1$ & $0,0$    & $1,2$   & $1,3$    & $1,4$   & $1,5$   \\\cline{3-7}
sawine@10
    43
  & $p_2$  & $2,1$    & $0,0$   & $2,3$    & $2,4$   & $2,5$   \\\cline{3-7}
sawine@10
    44
  & $p_3$ & $3,1$    & $3,2$   & $0,0$    & $3,4$   & $3,5$   \\\cline{3-7}
sawine@10
    45
  & $p_4$  & $4,1$    & $4,2$   & $4,3$    & $0,0$   & $4,5$   \\\cline{3-7}
sawine@10
    46
  & $p_5$  & $5,1$    & $5,2$   & $5,3$    & $5,4$   & $0,0$   \\\cline{3-7}
sawine@10
    47
\end{tabular}\\\\\\
sawine@2
    48
%
sawine@10
    49
Seit $(\alpha,\beta)$ ein NG mit Nutzenprofil $(u,v)$ im Spiel $G$, dann ist das LCP durch folgende Ungleichungen definiert.
sawine@3
    50
\begin{align}
sawine@10
    51
  0&\leq u-\beta(p_1)\cdot 0-\beta(p_2)\cdot 1-\beta(p_3)\cdot 1-\beta(p_4)\cdot 1-\beta(p_5)\cdot 1\\
sawine@10
    52
  0&\leq u-\beta(p_1)\cdot 2-\beta(p_2)\cdot 0-\beta(p_3)\cdot 2-\beta(p_4)\cdot 2-\beta(p_5)\cdot 2\\
sawine@10
    53
  0&\leq u-\beta(p_1)\cdot 3-\beta(p_2)\cdot 3-\beta(p_3)\cdot 0-\beta(p_4)\cdot 3-\beta(p_5)\cdot 3\\
sawine@10
    54
  0&\leq u-\beta(p_1)\cdot 4-\beta(p_2)\cdot 4-\beta(p_3)\cdot 4-\beta(p_4)\cdot 0-\beta(p_5)\cdot 4\\
sawine@10
    55
  0&\leq u-\beta(p_1)\cdot 5-\beta(p_2)\cdot 5-\beta(p_3)\cdot 5-\beta(p_4)\cdot 5-\beta(p_5)\cdot 0\\
sawine@10
    56
  0&\leq v-\alpha(p_1)\cdot 0-\alpha(p_2)\cdot 1-\alpha(p_3)\cdot 1-\alpha(p_4)\cdot 1-\alpha(p_5)\cdot 1\\
sawine@10
    57
  0&\leq v-\alpha(p_1)\cdot 2-\alpha(p_2)\cdot 0-\alpha(p_3)\cdot 2-\alpha(p_4)\cdot 2-\alpha(p_5)\cdot 2\\
sawine@10
    58
  0&\leq v-\alpha(p_1)\cdot 3-\alpha(p_2)\cdot 3-\alpha(p_3)\cdot 0-\alpha(p_4)\cdot 3-\alpha(p_5)\cdot 3\\
sawine@10
    59
  0&\leq v-\alpha(p_1)\cdot 4-\alpha(p_2)\cdot 4-\alpha(p_3)\cdot 4-\alpha(p_4)\cdot 0-\alpha(p_5)\cdot 4\\
sawine@10
    60
  0&\leq v-\alpha(p_1)\cdot 5-\alpha(p_2)\cdot 5-\alpha(p_3)\cdot 5-\alpha(p_4)\cdot 5-\alpha(p_5)\cdot 0\\
sawine@10
    61
  0&\leq \alpha(a)&\forall a\in A\\
sawine@10
    62
  0&\leq \beta(b)&\forall b\in B\\
sawine@10
    63
  1&=\alpha(p_1)+\alpha(p_2)+\alpha(p_3)+\alpha(p_4)+\alpha(p_5)\\
sawine@10
    64
  1&=\beta(p_1)+\beta(p_2)+\beta(p_3)+\beta(p_4)+\beta(p_5)\\
sawine@10
    65
  0&=\alpha(a)\cdot(u-U_1(a,\beta))&\forall a\in A\\
sawine@10
    66
  0&=\beta(b)\cdot(v-U_2(\alpha,b))&\forall b\in B
sawine@3
    67
\end{align}
sawine@10
    68
Gleichungen (15) und (16) sind zu expandieren, wie in den Gleichungen (1)-(10) gezeigt. Au\ss erdem muss f\"ur die Normalform hierbei zus\"atzliche Variablen eingef\"uhrt werden. Wir unterlassen beides um die \"Ubersichtlichkeit zu erhalten.
sawine@1
    69
\end{document}