Spieltheorie Übung 3

Eugen Sawin

May 20, 2012

Aufgabe 3.1

Für alle Beispiele soll n=1 gelten.

A leer: Sei $A = \emptyset$.

Mit $2^A = \{\emptyset\}$ folgt, dass für eine beliebige Funktion $f: A \to 2^A$, für jedes $x \in A$, $f(x) = \emptyset$ gilt. Somit hat f keinen Fixpunkt, da es kein $x \in A$ mit $x \in f(x)$ gibt.

Aus der Verletzung der Bedingung, dass A nicht leer sein darf, folgt somit auch die Verletzung der Bedingung, dass kein f(x) leer sein darf.

A nichtkonvex: Sei $A = \{0, 1\}$, also nicht-leer, kompakt aber nichtkonvex. Sei $f: A \to 2^A$ definiert durch $f(x) = \{1 - x\}$.

Mit $f(0) = \{1\}$ und $f(1) = \{0\}$ gibt es kein $x \in A$ mit $x \in f(x)$, somit hat f keinen Fixpunkt.

Ist A konvex, z.B. A=[0,1], also $A=\{x\mid x\in\mathbb{R}, 0\leq x\leq 1\}$, so gibt es für die gleiche Funktion f einen Fixpunkt mit $f(\frac{1}{2})=\{\frac{1}{2}\}$.

f nicht ober-hemi-stetig: Sei A = [0,1] und $f(x) = \{ [1-x] \}$.

Da $Graph(f)=\{(1,0)\}\cup\{(x,1)\mid x\in[0,1)\}$ keine abgeschlossene Menge bildet, ist f nicht oberhemi-stetig. Mit $f(1)=\{0\}$ und $f(x)=\{1\}$ für alle $x\in A, x<1$, gibt es kein $x\in A$ mit $x\in f(x)$, somit hat f keinen Fixpunkt.

Aufgabe 3.2

Nach der Definition des erwarteten Nutzens gilt

$$U_i(\alpha_i', \alpha_{-i}) = \sum_{b \in A} \left(\prod_{j \in N \setminus \{i\}} \alpha_j(b_j) \right) \alpha_i'(b_i) u_i(b)$$

Wir unterscheiden jetzt die Fälle $b_i=a_i,\ b_i=a_i'$ und die Aktionen mit unveränderter Verteilung. Dafür sei $B=\{(a_i,b_{-i})\mid b\in A\}$ die Menge aller Aktionsprofile mit Aktion a_i für Spieler i und $C=\{(a_i',b_{-i})\mid b\in A\}$ die Menge aller Aktionsprofile mit Aktion a_i' für Spieler i. Um die Formel kompakt zu halten definieren wir zudem $\alpha'=(\alpha_i',\alpha_{-i}).$

$$U_i(\alpha') = \sum_{b \in A \setminus B \cup C} \left(\prod_{j \in N} \alpha'_j(b_j) \right) u_i(b) + \sum_{b \in B} \left(\prod_{j \in N} \alpha'_j(b_j) \right) u_i(b) + \sum_{b \in C} \left(\prod_{j \in N} \alpha'_j(b_j) \right) u_i(b)$$

Wegen $\alpha_i'(a_i) = 0$ und $\alpha_i'(b_i) = \alpha_i(b_i)$ für alle $i \in N$ und $b \in A \setminus B \cup C$ folgt

$$U_{i}(\alpha') = \sum_{b \in A \setminus B \cup C} \left(\prod_{j \in N} \alpha_{j}(b_{j}) \right) u_{i}(b) + \sum_{b \in C} \left(\prod_{j \in N} \alpha'_{j}(b_{j}) \right) u_{i}(b)$$

$$U_{i}(\alpha') = U_{i}(\alpha) - \sum_{b \in B} \left(\prod_{j \in N} \alpha_{j}(b_{j}) \right) u_{i}(b) - \sum_{b \in C} \left(\prod_{j \in N} \alpha_{j}(b_{j}) \right) u_{i}(b) + \sum_{b \in C} \left(\prod_{j \in N} \alpha'_{j}(b_{j}) \right) u_{i}(b)$$

Wegen $B_i(a_{-i}) = \{a_i \in A_i \mid u_i(a_{-1}, a_i) \geq u_i(a_{-i}, a_i') \text{ für alle } a_i' \in A_i\}, \ a_i' \in B_i(\alpha_{-i}) \text{ und } a_i \notin B_i(\alpha_{-i}) \text{ folgt, dass für alle } b \in B \text{ und } b' \in C \text{ gilt } u_i(b') > u_i(b). \text{ Zudem wurden bei der Verteilung } \alpha' \text{ die Wahrscheinlichkeiten aller } b' \in C \text{ mit den von } b \in B \text{ aufgestockt, d.h. für alle } b \in B \text{ und } b' \in C \text{ gilt } b \in B \text{ und } b' \in B \text{ und } b' \in B \text{ und } b' \in C \text{ gilt } b \in B \text{ und } b' \in B$

$$\alpha'_i(b') \cdot u_i(b') = (\alpha_i(b') + \alpha_i(b)) \cdot u_i(b')$$

$$\alpha'_i(b') \cdot u_i(b') = \alpha_i(b') \cdot u_i(b') + \alpha_i(b) \cdot u_i(b')$$

$$\implies \alpha'_i(b') \cdot u_i(b') > \alpha_i(b') \cdot u_i(b') + \alpha_i(b) \cdot u_i(b)$$

Somit folgt

$$\sum_{b \in C} \left(\prod_{j \in N} \alpha'_j(b_j) \right) u_i(b) > \sum_{b \in B} \left(\prod_{j \in N} \alpha_j(b_j) \right) u_i(b) + \sum_{b \in C} \left(\prod_{j \in N} \alpha_j(b_j) \right) u_i(b)$$

$$\implies U_i(\alpha') > U_i(\alpha)$$

Aufgabe 3.3

Nach dem Support-Lemma, können wir Strategie X für Spieler 2 ausschließen, da bei einem NG α^* für jede reine Strategie $a_i \in supp(\alpha_i^*)$ gelten muss $a_i \in B_i(\alpha_{-i}^*)$ mit $B_i(\alpha_{-i}^*) = \{a_i \in A_i \mid U_i(\alpha_{-1}^*, a_i) \geq U_i(\alpha_{-i}^*, a_i')$ für alle $a_i' \in A_i\}$, d.h. a_i ist eine beste Antwort auf α_{-i}^* . Nur B und S werden dieser Bedingung für Spieler 2 gerecht.

Mit Hilfe des Lemmas ermitteln wir nun die Wahrscheinlichkeitsverteilungen.

$$U_1(B, \alpha_2^*) = 4 \cdot \alpha_2^*(B)$$

 $U_1(S, \alpha_2^*) = 2 \cdot \alpha_2^*(S)$

Wir wissen, dass für ein NG $U_1(B,\alpha_2^*)=U_1(S,\alpha_2^*)$ gelten muss. Außerdem gilt $\alpha_2^*(B)+\alpha_2^*(S)=1$. Wir stellen die erste Gleichung entsprechend um und setzen das Ergebnis mit der zweiten Gleichung gleich und lösen auf.

$$\begin{aligned} 4 \cdot (1 - \alpha_2^*(S)) &= 2 \cdot \alpha_2^*(S) \\ 4 - 4 \cdot \alpha_2^*(S) &= 2 \cdot \alpha_2^*(S) \\ -6 \cdot \alpha_2^*(S) &= -4 \\ \alpha_2^*(S) &= \frac{2}{3} \implies \alpha_2^*(B) = \frac{1}{3} \end{aligned}$$

Wir könnten α_1 auf gleiche Weise herleiten, jedoch ist dies durch die Symmetrie der Nutzenfunktion nicht notwendig. Trivialerweise folgt $\alpha_1^*(B)=\frac{2}{3}$ und $\alpha_1^*(S)=\frac{1}{3}$.

Somit haben wir das NG ermittelt, es hat folgende Auszahlungen: $U_1(\alpha^*) = \alpha_1^*(B) \cdot \alpha_2^*(B) \cdot u_1(B,B) + \alpha_1^*(S) \cdot \alpha_2^*(S) \cdot u_1(S,S) = \frac{4}{3} = U_2(\alpha^*).$