Spieltheorie Übung 1

Eugen Sawin

May 5, 2012

Aufgabe 1.1

Das Spiel $G=\langle \{1,2\},(A_i),(u_i) \rangle$ ist durch die folgende Matrix definiert.

		Spieler 2				
		Schere	Stein	Papier	Echse	Spock
Spieler 1	Schere	0,0	-1, 1	1, -1	1, -1	-1, 1
	Stein	1, -1	0,0	-1, 1	1, -1	-1, 1
	Papier	-1, 1	1, -1	0,0	-1, 1	1, -1
	Echse	-1, 1	-1, 1	1, -1	0, 0	1, -1
	Spock	1, -1	1, -1	-1, 1	-1, 1	0,0

Aufgabe 1.2

Wir nehmen o.B.d.A. an, dass Wähler 1 bis m Kandidat K_1 bevorzugen und die Wähler m+1 bis n Kandidat K_2 . Zudem soll immer $i \neq j$ gelten.

(a) Das Spiel
$$G = \langle N, (A_i)_{i \in N}, (u_i)_{i \in N} \rangle$$
 mit $N = \{1, ..., n\}, \ A_i = \{K_1, K_2\}$ und
$$u_i(a) = \begin{cases} & 1 & \text{wenn } |\{a_i \mid a_i = K_1\}| \geq m \text{ und } i \leq m \\ & 1 & \text{wenn } |\{a_i \mid a_i = K_2\}| \geq m \text{ und } i > m \\ & -1 & \text{sonst} \end{cases}$$

Für n=3 und m=2 gilt, dass Wähler 1 und 2 Kandidat K_1 und Wähler 3 Kandidat K_2 bevorzugen. Wir teilen die ansonsten dreidimensionale Matrix in zwei Matrizen auf.

(b) $(K_2, *, *)$ wird durch $(K_1, *, *)$ schwach dominiert, da folgendes gilt.

$$u_1(K_2, K_1, K_1) = u_1(K_1, K_1, K_1)$$

$$u_1(K_2, K_2, K_1) < u_1(K_1, K_2, K_1)$$

$$u_1(K_2, K_1, K_2) < u_1(K_1, K_1, K_2)$$

$$u_1(K_2, K_2, K_2) = u_1(K_1, K_2, K_2)$$

 $(*,K_2,*)$ wird durch $(*,K_1,*)$ schwach dominiert, da folgendes gilt.

$$u_2(K_1, K_2, K_1) = u_2(K_1, K_1, K_1)$$

$$u_2(K_2, K_2, K_1) < u_2(K_2, K_1, K_1)$$

$$u_2(K_1, K_2, K_2) < u_2(K_1, K_1, K_2)$$

$$u_2(K_2, K_2, K_2) = u_2(K_2, K_1, K_2)$$

 $(*,*,K_1)$ wird durch $(*,*,K_2)$ schwach dominiert, da folgendes gilt.

$$u_3(K_1, K_1, K_1) = u_3(K_1, K_1, K_2)$$

$$u_3(K_2, K_1, K_1) < u_3(K_2, K_1, K_2)$$

$$u_3(K_1, K_2, K_1) < u_3(K_1, K_2, K_2)$$

$$u_3(K_2, K_2, K_1) = u_3(K_2, K_2, K_2)$$

Da Wähler 1 und 2 Kandidat K_1 bevorzugen und Wäher 3 Kandidat K_2 folgt daraus, dass für den Gegenkandidaten zu stimmen eine schwach dominierte Strategie ist.

Für den allgemeinen Fall bedeutet das solange k_i Wähler für K_i stimmen mit $k_i > m$, bleibt die Auszahlung für alle Wähler bei einzelner Strategieabweichung unverändert, da danach entweder $k_i - 1 \ge m$ oder $k_i + 1 > m$ gilt und somit die Mehrheit bildet. Da wir den Kandidaten variabel gelassen haben, gilt dies analog für den Fall mit $k_i < n - m$, da mit $k_i + 1 \le n - m$ keine Mehrheit gegeben ist.

Sollten nur k_i Wähler für K_i stimmen mit $k_i=m$, bedeutet jede Strategieabweichung $k_i+1>m$ und $k_i-1< m$ eine veränderte Auszahlung für alle Wähler. In diesem Fall wird die Auszahlung für jeden Anhänger von Kandidat K_j mit $j\neq i$ erhöht, sobald ein Wähler mehr für K_j stimmt, gleichzeitig wird die Auszahlung für alle Anhänger von Kandidat K_i verringert. Analog gilt dies für den Fall $k_i=m-1$.

Aus den beiden Fällen folgt, dass für den Gegenkandidaten zu stimmen entweder keine Auswirkung oder eine Verschlechterung der Auszahlung bedeutet und somit eine schwach dominierte Strategie darstellt.

(c) Die NG des Spiels mit
$$n=3$$
 und $m=2$ sind (K_1,K_1,K_1) , (K_1,K_1,K_2) und (K_2,K_2,K_2) .

Für den allgemeinen Fall nehmen wir o.B.d.A. an, dass Wähler 1 bis m Kandidat K_1 bevorzugen und die Wähler m+1 bis n Kandidat K_2 . Zudem soll immer $i \neq j$ gelten.

Für den Fall dass k_1 Wähler für K_1 stimmen mit $k_1=m$, verändert sich die Auszahlung für alle Wähler, sobald ein Wähler von K_1 auf K_2 wechselt. Dieser Fall ist ein NG gdw. Wähler 1 bis m für K_1 stimmen, da ein Strategiewechsel für sie eine Verschlechterung der Auszahlung bedeutet und ein Strategiewechsel der restlichen n-m Wähler von K_2 auf K_1 kein Auswirkung hat.

Der andere Fall mit k_i Stimmen für K_i mit $k_i > m$ ist ein NG, da ein Strategiewechsel eines einzelnen Wählers keine Auswirkung auf die Mehrheitsverteilung und somit die Auszahlungen hat.

Daraus leiten wir folgende NG für das Spiel ab. $(w_1,...,w_n)$ mit

$$w_i = K_1, 1 \le i \le m \text{ und } w_j = K_2, m < j \le n$$
 (1)

$$||\{w_i \mid w_i = K_1\}| - |\{w_j \mid w_j = K_2\}|| > 1$$
(2)

Umgangssprachlich kann man (1) als den Zusammenhalt der Anhänger und (2) als die Dominanz der absoluten Mehrheit bezeichnen. Man beachte, dass (2) kein einzelnes NG definiert, sondern eine Klasse von NG mit ca. $2(\prod_{i=1}^{n-m-1}(n-i+1))+2$ Instanzen.