paper/src/paper.tex
author Eugen Sawin <sawine@me73.com>
Thu, 30 Jun 2011 18:00:04 +0200
changeset 23 8a76c724883c
parent 22 2f6c10f79d5f
child 24 1d28f5f04efd
permissions -rw-r--r--
Less prolo symbols.
sawine@7
     1
\documentclass[a4paper, pagesize, DIV=calc, smallheadings]{article}  
sawine@2
     2
\usepackage{graphicx}
sawine@2
     3
%\usepackage[latin1]{inputenc}
sawine@14
     4
\usepackage{amsmath, amsthm, amssymb, amsfonts, verbatim}
sawine@2
     5
\usepackage{typearea}
sawine@2
     6
\usepackage{algorithm}
sawine@2
     7
\usepackage{algorithmic}
sawine@15
     8
\usepackage{multicol}
sawine@11
     9
%\usepackage{fullpage}
sawine@19
    10
%\usepackage{a4wide}
sawine@19
    11
\usepackage[left=3.9cm, right=3.9cm]{geometry}
sawine@5
    12
%\usepackage[T1]{fontenc}
sawine@5
    13
%\usepackage{arev}
sawine@7
    14
%\pagestyle{headings}
sawine@19
    15
sawine@2
    16
\renewcommand{\familydefault}{\sfdefault}
sawine@22
    17
\renewenvironment{proof}{{\bfseries Proof.}}{}
sawine@17
    18
\newcommand{\M}{\mathcal{M}}
sawine@17
    19
\newcommand{\N}{\mathbb{N}_0}
sawine@19
    20
\newcommand{\F}{\mathcal{F}}
sawine@19
    21
\newcommand{\Prop}{\mathcal{P}}
sawine@22
    22
\newcommand{\A}{\mathcal{A}}
sawine@19
    23
sawine@7
    24
\title{\uppercase{\textbf{\Large{A}\large{lgorithmic} \Large{V}\large{erification of} \Large{R}\large{eactive} \Large{S}\large{ystems}}\\
sawine@7
    25
\tiny{Draft}
sawine@7
    26
}}
sawine@7
    27
\author{
sawine@19
    28
\uppercase{{\small{E}\scriptsize{UGEN} \small{S}\scriptsize{AWIN}}\thanks{\lowercase{\scriptsize{\texttt{sawine@informatik.uni-freiburg.de}}}}\\
sawine@19
    29
{\em \small{U}\scriptsize{NIVERSITY OF} \small{F}\scriptsize{REIBURG}}\thanks{\tiny{Computer Science Department, Research Group for Foundations of Artificial Intelligence}}\\
sawine@7
    30
%{\em \small{C}\scriptsize{omputer} \small{S}\scriptsize{cience} \small{D}\scriptsize{epartment}}\\
sawine@7
    31
{\em \small{G}\scriptsize{ERMANY}}}\\
sawine@7
    32
%\texttt{\footnotesize{sawine@informatik.uni-freiburg.de}}
sawine@7
    33
}
sawine@5
    34
\date{\textsc{\hfill}}
sawine@7
    35
sawine@22
    36
\theoremstyle{definition} %plain, definition, remark, proof, corrolary
sawine@7
    37
\newtheorem*{def:finite words}{Finite words}
sawine@7
    38
\newtheorem*{def:infinite words}{Infinite words}
sawine@8
    39
\newtheorem*{def:regular languages}{Regular languages}
sawine@8
    40
\newtheorem*{def:regular languages closure}{Regular closure}
sawine@7
    41
\newtheorem*{def:omega regular languages}{$\omega$-regular languages}
sawine@8
    42
\newtheorem*{def:omega regular languages closure}{$\omega$-regular closure}
sawine@11
    43
\newtheorem*{def:buechi automata}{Automata}
sawine@11
    44
\newtheorem*{def:automata runs}{Runs}
sawine@11
    45
\newtheorem*{def:automata acceptance}{Acceptance}
sawine@21
    46
\newtheorem*{def:general automata}{Generalised automata}
sawine@21
    47
\newtheorem*{def:general acceptance}{Acceptance}
sawine@14
    48
\newtheorem*{def:vocabulary}{Vocabulary}
sawine@19
    49
\newtheorem*{def:frames}{Frames}
sawine@18
    50
\newtheorem*{def:models}{Models}
sawine@18
    51
\newtheorem*{def:satisfiability}{Satisfiability}
sawine@22
    52
\newtheorem*{def:fs closure}{Fischer-Ladner closure}
sawine@22
    53
\newtheorem*{def:atoms}{Atoms}
sawine@14
    54
sawine@22
    55
\theoremstyle{plain}
sawine@21
    56
\newtheorem{prop:vocabulary sat}{Proposition}[section]
sawine@21
    57
\newtheorem{prop:general equiv}{Proposition}[section]
sawine@15
    58
sawine@22
    59
\theoremstyle{plain}
sawine@22
    60
\newtheorem{thm:model language}{Theorem}[section]
sawine@22
    61
sawine@0
    62
\begin{document}
sawine@0
    63
\maketitle
sawine@4
    64
\thispagestyle{empty}
sawine@2
    65
%\itshape
sawine@2
    66
%\renewcommand\abstractname{Abstract} 
sawine@0
    67
\begin{abstract}
sawine@0
    68
Over the past two decades, temporal logic has become a very basic tool for spec-
sawine@0
    69
ifying properties of reactive systems. For finite-state systems, it is possible to use
sawine@0
    70
techniques based on B\"uchi automata to verify if a system meets its specifications.
sawine@0
    71
This is done by synthesizing an automaton which generates all possible models of
sawine@0
    72
the given specification and then verifying if the given system refines this most gen-
sawine@0
    73
eral automaton. In these notes, we present a self-contained introduction to the basic
sawine@0
    74
techniques used for this automated verification. We also describe some recent space-
sawine@0
    75
efficient techniques which work on-the-fly.
sawine@0
    76
\end{abstract}
sawine@2
    77
%\normalfont
sawine@4
    78
\newpage
sawine@2
    79
\section{Introduction}
sawine@2
    80
Program verification is a fundamental area of study in computer science. The broad goal
sawine@5
    81
is to verify whether a program is ``correct''--i.e., whether the implementation of a program
sawine@2
    82
meets its specification. This is, in general, too ambitious a goal and several assumptions
sawine@2
    83
have to be made in order to render the problem tractable. In these lectures, we will focus
sawine@2
    84
on the verification of finite-state reactive programs. For specifying properties of programs,
sawine@2
    85
we use linear time temporal logic.
sawine@2
    86
sawine@2
    87
What is a reactive program? The general pattern along which a conventional program
sawine@2
    88
executes is the following: it accepts an input, performs some computation, and yields an
sawine@2
    89
output. Thus, such a program can be viewed as an abstract function from an input domain
sawine@2
    90
to an output domain whose behaviour consists of a transformation from initial states to
sawine@2
    91
final states.
sawine@2
    92
sawine@2
    93
In contrast, a reactive program is not expected to terminate. As the name suggests, such
sawine@2
    94
systems “react” to their environment on a continuous basis, responding appropriately to
sawine@2
    95
each input. Examples of such systems include operating systems, schedulers, discrete-event
sawine@2
    96
controllers etc. (Often, reactive systems are complex distributed programs, so concurrency
sawine@2
    97
also has to be taken into account. We will not stress on this aspect in these lectures—we
sawine@2
    98
take the view that a run of a distributed system can be represented as a sequence, by
sawine@2
    99
arbitrarily interleaving concurrent actions.)
sawine@2
   100
sawine@2
   101
To specify the behaviour of a reactive system, we need a mechanism for talking about
sawine@2
   102
the way the system evolves along potentially infinite computations. Temporal logic 
sawine@2
   103
has become a well-established formalism for this purpose. Many varieties of temporal logic
sawine@2
   104
have been defined in the past twenty years—we focus on propositional linear time temporal
sawine@2
   105
logic (LTL).
sawine@2
   106
sawine@2
   107
There is an intimate connection between models of LTL formulas and languages of
sawine@2
   108
infinite words—the models of an LTL formula constitute an ω-regular language over an
sawine@2
   109
appropriate alphabet. As a result, the satisfiability problem for LTL reduces to checking
sawine@2
   110
for emptiness of ω-regular languages. This connection was first explicitly pointed out in.
sawine@2
   111
sawine@8
   112
\section{$\omega$-regular languages}
sawine@7
   113
\begin{def:finite words}
sawine@11
   114
Let $\Sigma$ be a non-empty set of symbols, called the alphabet. $\Sigma^*$ is the set of all \emph{finite} words over $\Sigma$. A \emph{finite} word $w \in \Sigma^*$ is a \emph{finite} sequence $v_0,...,v_{n-1}$ of symbols from alphabet $\Sigma$ with length $n = |w|$. $\varepsilon$ denotes the empty word with length $|\varepsilon| = 0$.
sawine@7
   115
\end{def:finite words}
sawine@7
   116
sawine@8
   117
\begin{def:regular languages}
sawine@8
   118
The class of regular languages is defined recursively over an alphabet $\Sigma$:
sawine@15
   119
\begin{multicols}{2}
sawine@8
   120
\begin{itemize}
sawine@8
   121
\item $\emptyset$ is regular
sawine@8
   122
\item $\{\varepsilon\}$ is regular
sawine@8
   123
\item $\forall_{a \in \Sigma}:\{a\}$ is regular
sawine@8
   124
\end{itemize}
sawine@15
   125
\end{multicols}
sawine@8
   126
\end{def:regular languages}
sawine@8
   127
sawine@8
   128
\begin{def:regular languages closure}
sawine@10
   129
Let $L_{R_1}, L_{R_2} \in \Sigma^*$ be regular. The class of regular languages is closed under following operations:
sawine@15
   130
\begin{multicols}{2}
sawine@8
   131
\begin{itemize}
sawine@8
   132
\item $L_{R_1}^*$
sawine@8
   133
\item $L_{R_1} \circ L_{R_2}$
sawine@8
   134
\item $L_{R_1} \cup L_{R_2}$
sawine@10
   135
\item $L_{R_1} \cap L_{R_2}$
sawine@10
   136
\item $\overline{L}_{R_1}$ and therefore $L_{R_1} - L_{R_2}$
sawine@8
   137
\end{itemize}
sawine@15
   138
\end{multicols}
sawine@8
   139
\end{def:regular languages closure}
sawine@8
   140
sawine@9
   141
\begin{def:infinite words}
sawine@17
   142
$\Sigma^\omega$ is the set of all \emph{infinite} words over $\Sigma$. An \emph{infinite} word $w \in \Sigma^\omega$ is an \emph{infinite} sequence $v_0,...,v_\infty$ with length $\infty$. To address the elements of the infinite sequence $w$, we view the word as a function $w : \N \to \Sigma$ with $w(i) = v_i$; thus $w(i)$ denotes the symbol at sequence position $i$ of word $w$; another notation used for $w(i)$ is $w_i$.
sawine@9
   143
\end{def:infinite words}
sawine@9
   144
sawine@7
   145
\begin{def:omega regular languages}
sawine@8
   146
Set $L$ is an $\omega$-language over alphabet $\Sigma$ iff $L \subseteq \Sigma^\omega$. Let $L_R \subseteq \Sigma^*$ be a non-empty regular finite language and $\varepsilon \notin L_R$. A set $L$ is $\omega$-regular iff $L$ is an $\omega$-language and $L = L_R^\omega$.
sawine@7
   147
\end{def:omega regular languages}
sawine@7
   148
sawine@8
   149
\begin{def:omega regular languages closure}
sawine@8
   150
Let $L_{\omega_1}, L_{\omega_2} \subseteq \Sigma^\omega$ be $\omega$-regular languages. The class of $\omega$-regular languages is closed under following operations:
sawine@8
   151
\begin{itemize}
sawine@8
   152
\item $L_R \circ L_{\omega_1}$, but \emph{not} $L_{\omega_1} \circ L_R$
sawine@8
   153
\item $L_{\omega_1} \cup L_{\omega_2}$, but only \emph{finitely} many times
sawine@8
   154
\end{itemize}
sawine@8
   155
\end{def:omega regular languages closure}
sawine@7
   156
sawine@8
   157
\section{B\"uchi automata}
sawine@11
   158
\begin{def:buechi automata}
sawine@22
   159
A non-deterministic B\"uchi automaton is a tuple $\A = (\Sigma, S, S_0, \Delta, F)$, where $\Sigma$ is a finite non-empty \emph{alphabet}, $S$ is a finite non-empty set of \emph{states}, $S_0 \subseteq S$ is the set of \emph{initial states}, $F \subseteq S$ is the set of \emph{accepting states} and $\Delta: S \times \Sigma \times S$ is a \emph{transition relation}. When suitable we will use the arrow notation for the transitions, where $s \xrightarrow{a} s'$ iff $(s, a, s') \in \Delta$.
sawine@11
   160
sawine@22
   161
A \emph{deterministic B\"uchi automaton} is a specialisation, where the \emph{transition relation} $\Delta$ is a \emph{transition function} $\delta: S \times \Sigma \to S$ and the set $S_0$ of \emph{initial states} contains only a single state $s_0$.
sawine@11
   162
sawine@19
   163
Within this text \emph{automaton} will refer to the non-deterministic B\"uchi automaton, unless otherwise noted. 
sawine@11
   164
\end{def:buechi automata}
sawine@11
   165
sawine@11
   166
\begin{def:automata runs}
sawine@22
   167
Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton, a run $\rho$ of $\A$ on an infinite word $w = a_0,a_1,...$ over alphabet $\Sigma$ is a sequence $\rho = s_0,s_1,...$, where $s_0 \in S_0$ and $(s_i, a_i, s_{i+1}) \in \Delta$, for all $i \geq 0$. Again we may view the run sequence as a function $\rho : \N \to S$, where $\rho(i) = s_i$ denotes the state at the $i^{th}$ sequence position.
sawine@11
   168
\end{def:automata runs}
sawine@11
   169
sawine@11
   170
\begin{def:automata acceptance}
sawine@22
   171
Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $\A$, we define $inf(\rho) = \{s \in S \mid \exists^\omega{n \in \N}: \rho(n) = s\}$, where $\exists^\omega$ denotes the existential quantifier for infinitely many occurances, i.e., $s$ occurs infinitely often in $\rho$.
sawine@11
   172
sawine@22
   173
The run $\rho$ is \emph{accepting} iff $inf(\rho) \cap F \neq \emptyset$, i.e., there exists an \emph{accepting state} which occurs infinitely often in the run $\rho$. The automaton $\A$ \emph{accepts} an input word $w$, iff there exists a run $\rho$ of $\A$ on $w$, such that $\rho$ is \emph{accepting}. 
sawine@21
   174
sawine@22
   175
The language $L_\omega(\A)$ recognised by automaton $\A$ is the set of all infinite words accepted by $\A$. A language $L$ is \emph{B\"uchi-recognisable} iff there is an automaton $\A$ with $L = L_\omega(\A)$.
sawine@11
   176
\end{def:automata acceptance}
sawine@11
   177
sawine@21
   178
\subsection{Generalised B\"uchi automata}
sawine@21
   179
\begin{def:general automata}
sawine@22
   180
A \emph{generalised B\"uchi automaton} is a tuple $\A = (\Sigma, S, S_0, \Delta, \{F_i\}_{i < k})$ for $i, k \in \N$, where the \emph{acceppting states} $F_i$ are composed within a finite set with $F_i \subseteq S$.
sawine@21
   181
\end{def:general automata}
sawine@21
   182
sawine@21
   183
\begin{def:general acceptance}
sawine@22
   184
The acceptance condition is adjusted accordingly. A run $\rho$ of $\A$ is \emph{accepting} iff $\forall{i < k}: inf(\rho) \cap F_i \neq \emptyset$. 
sawine@21
   185
\end{def:general acceptance}
sawine@21
   186
sawine@21
   187
\begin{prop:general equiv}
sawine@22
   188
Let $\A = (\Sigma, S, S_0, \Delta, \{F_i\}_{i < k})$ be a \emph{generalised automaton} and let $\A_i = (\Sigma, S, S_0, \Delta, F_i)$ be \emph{non-deterministic automata}, then following equivalance condition holds:
sawine@22
   189
\[L(\A) = \bigcap_{i < k} L(\A_i)\]
sawine@21
   190
\end{prop:general equiv}
sawine@21
   191
\noindent Intuitively follows the equivalance of the language recognition abilities of general and non-deterministic B\"uchi automata.
sawine@21
   192
sawine@8
   193
\section{Linear temporal logic}
sawine@19
   194
\subsection{Syntax}
sawine@19
   195
Let $\Prop$ be the countable set of \emph{atomic propositions}. The \emph{alphabet} of the language $L_{LTL}(\Prop)$ is $\Prop \cup \{\neg, \lor, X, U\}$. We define the $L_{LTL}(\Prop)$-\emph{formulae} $\varphi$ using following productions:
sawine@19
   196
\[\varphi ::= p \in \Prop \,|\, \neg \varphi \,|\, \varphi \lor \varphi \,|\, X \varphi \,|\, \varphi U \varphi\]
sawine@13
   197
sawine@18
   198
\subsection{Interpretation}
sawine@13
   199
The intuition should go as follows: $\neg$ and $\lor$ correspond to the Boolean \emph{negation} and \emph{disjunction}, the unary temporal operator $X$ reads as \emph{next} and the binary temporal operator $U$ reads as \emph{until}.
sawine@13
   200
sawine@13
   201
LTL is interpreted over \emph{computation paths}, where a computation corrensponds to a model over a \emph{Kripke-frame} constructed by the order of natural numbers.
sawine@13
   202
sawine@18
   203
\subsection{Semantics}
sawine@19
   204
\begin{def:frames}
sawine@22
   205
An LTL-\emph{frame} is a tuple $\F = (S, R)$, where $S = \{s_i \mid i \in \N\}$ is the set of states and $R = \{(s_i, s_{i+1}) \mid i \in \N\}$ the set of accessibility relations. Hence $S$ is an isomorphism of $\N$ and $R$ an isomorphism of the strict linear order $(\N, <)$, which corresponds to the linear progression of discrete time. 
sawine@19
   206
\end{def:frames}
sawine@19
   207
sawine@18
   208
\begin{def:models}
sawine@22
   209
An LTL-\emph{model} is a tuple $\M = (\F, V)$, where $\F$ is a \emph{frame} and $V: S \to 2^\Prop$ a \emph{valuation function}. Intuitively we say $p \in \Prop$ is \emph{true} at time instant $i$ iff $p \in V(i)$. 
sawine@19
   210
%A \emph{model} is a function $\M: \N \to 2^\Prop$ over \emph{frame} $\F$. The frame constitutes a linear order over $\N$, which corresponds to the linear progression of time from the \emph{present/past} into the \emph{future}. Therefore $\M(i)$ assigns a set of \emph{positive atomic propositions} to each state of time instant $i$. Intuitively we say $p \in \Prop$ is \emph{true} at time instant $i$ iff $p \in \M(i)$.
sawine@18
   211
\end{def:models}
sawine@13
   212
sawine@18
   213
\begin{def:satisfiability}
sawine@19
   214
A model $\M = (\F, V)$ \emph{satisfies} a formula $\varphi$ at time instant $i$ is denoted by $\M,i \models \varphi$. Satisfiability of a formula $\varphi$ is defined inductively over the structure of $\varphi$:
sawine@13
   215
\begin{itemize}
sawine@22
   216
\item $\M,i \models p$ for $p \in \Prop \iff p \in V(i)$
sawine@22
   217
\item $\M,i \models \neg \varphi \iff$ not $\M,i \models \varphi$
sawine@22
   218
\item $\M,i \models \varphi \lor \psi \iff \M,i \models \varphi$ or $\M,i \models \psi$
sawine@22
   219
\item $\M,i \models X \varphi \iff \M,i+1 \models \varphi$
sawine@22
   220
\item $\M,i \models \varphi U \psi \iff \exists{k \geq i}: \M,k \models \psi$ and $\forall{i \leq j < k}: \M,j \models\varphi$
sawine@13
   221
\end{itemize}
sawine@22
   222
sawine@18
   223
\end{def:satisfiability}
sawine@18
   224
sawine@14
   225
\begin{def:vocabulary}
sawine@22
   226
Let $\varphi$ be an LTL-formula over atomic propositions $\Prop$, we define the \emph{vocabulary} $Voc(\varphi)$ of $\varphi$ inductively:
sawine@15
   227
\begin{multicols}{2}
sawine@14
   228
\begin{itemize}
sawine@19
   229
\item $Voc(p) = \{p\}$ for $p \in \Prop$
sawine@14
   230
\item $Voc(\neg \varphi) = Voc(\varphi)$
sawine@14
   231
\item $Voc(\varphi \lor \psi) = Voc(\varphi) \cup Voc(\psi)$
sawine@14
   232
\item $Voc(X \varphi) = Voc(\varphi)$
sawine@14
   233
\item $Voc(\varphi U \psi) = Voc(\varphi) \cup Voc(\psi)$
sawine@14
   234
\end{itemize}
sawine@15
   235
\end{multicols}
sawine@17
   236
%
sawine@22
   237
\noindent Let $\M = (\F, V)$ be a model and $\varphi$ an LTL-formula, we define model $\M_{Voc(\varphi)} = (\F, V_{Voc(\varphi)})$ with:
sawine@21
   238
\[\forall{i \in \N}: V_{Voc(\varphi)}(i) = V(i) \cap Voc(\varphi)\]
sawine@21
   239
Henceforth, we will abbreviate $\M_{Voc(\varphi)}$ and $V_{Voc(\varphi)}$ with $\M_\varphi$ and $V_\varphi$ accordingly. 
sawine@22
   240
%\noindent Let $\M$ be a model and $\varphi$ an LTL-formula, we define model $\M_{Voc(\varphi)}$:
sawine@21
   241
%\[\forall{i \in \N}: \M_{Voc(\varphi)} = \M(i) \cap Voc(\varphi)\]
sawine@17
   242
\end{def:vocabulary}
sawine@17
   243
%
sawine@17
   244
\begin{prop:vocabulary sat}
sawine@22
   245
Let $\M$ be a model and $\varphi$ an LTL-formula, then following holds:
sawine@21
   246
\[\forall{i \in \N}: \M,i \models \varphi \iff \M_\varphi,i \models \varphi\] 
sawine@17
   247
\end{prop:vocabulary sat}
sawine@17
   248
%
sawine@19
   249
\subsection{Derived connectives}
sawine@17
   250
For a more convenient description of system specifications we present some derived symbols to be used in LTL-formulae. At first we introduce the notion of \emph{truth} and \emph{falsity} using constants $\top$ and $\bot$. Then we expand our set of connectives with the Boolean \emph{and}, \emph{implication} and \emph{equivalence}. And at last we derive the commonly used modal operators \emph{eventually} and \emph{henceforth}. 
sawine@15
   251
sawine@19
   252
Let $\varphi$ and $\psi$ be $L_{LTL}(\Prop)$-formulae:
sawine@15
   253
\begin{multicols}{2}
sawine@15
   254
\begin{itemize}
sawine@19
   255
\item $\top \equiv p \lor \neg p$ for $p \in \Prop$
sawine@15
   256
\item $\bot \equiv \neg \top$
sawine@15
   257
\item $\varphi \land \psi \equiv \neg (\neg \varphi \lor \neg \psi)$
sawine@15
   258
\item $\varphi \rightarrow \psi \equiv \neg \varphi \lor \psi$
sawine@15
   259
\item $\varphi \leftrightarrow \psi \equiv (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
sawine@15
   260
\item $\Diamond \varphi \equiv \top U \varphi$
sawine@15
   261
\item $\Box \varphi \equiv \neg \Diamond \neg \varphi$
sawine@15
   262
\end{itemize}
sawine@15
   263
\end{multicols}
sawine@16
   264
From the derivations for operators $\Diamond$, \emph{read diamond}, and $\Box$, \emph{read box}, it follows:
sawine@17
   265
\begin{multicols}{2}
sawine@16
   266
\begin{itemize}
sawine@17
   267
\item $\M,i \models \Diamond \varphi$ iff $\exists{k \geq i}: \M,k \models \varphi$
sawine@17
   268
\item $\M,i \models \Box \varphi$ iff $\forall{k \geq i}: \M,k \models \varphi$
sawine@16
   269
\end{itemize}
sawine@17
   270
\end{multicols}
sawine@19
   271
sawine@19
   272
With the additional derived connectives we get the following $L_{LTL}(\Prop)$-formulae productions:
sawine@19
   273
\[\varphi ::= p \in \Prop \,|\, \neg \varphi \,|\, \varphi \lor \varphi \,|\, \varphi \land \varphi \,|\, X \varphi \,|\, \varphi U \varphi \,|\, \varphi \rightarrow \varphi \,|\, \varphi \leftrightarrow \varphi \,|\, \Diamond \varphi \,|\, \Box \varphi\]
sawine@19
   274
sawine@21
   275
\section{Automata construction}
sawine@22
   276
Before applying the automata-theoretic verification methods, we need to construct an automaton for a given specification formula $\varphi$. For that, we treat the model $\M = (\F, V)$ for an LTL-formula $\varphi$ as an infinite word over the finite alphabet $2^{Voc(\varphi)}$. We define the \emph{representation function} $rep: \M \to 2^\Prop$, which returns an infinite word representing the model $\M_\varphi = (\F, V_\varphi)$ over the ordered image $V_\varphi^\rightarrow(\N)$ of its validation function, i.e., $rep(\M_\varphi) = V_\varphi(0), V_\varphi(1), ...$.
sawine@22
   277
\[Mod(\varphi) = \{rep(\M_\varphi) \mid \M_\varphi = (\F, V_\varphi) \land \M_\varphi,0 \models \varphi\}\]
sawine@21
   278
$Mod(\varphi)$ is the set of all infinite words, which represent models for $\varphi$.
sawine@21
   279
sawine@22
   280
\begin{def:fs closure}
sawine@22
   281
Let $\varphi$ be an LTL-formula, then the \emph{Fischer-Ladner closure} $FL(\varphi)$ of $\varphi$ is the smallest set of formulae such that following holds:
sawine@22
   282
%\begin{multicols}{2}
sawine@22
   283
\begin{itemize}
sawine@22
   284
\item $\varphi \in FL(\varphi)$
sawine@22
   285
\item $\neg \psi \in FL(\varphi) \implies \psi \in FL(\varphi)$
sawine@22
   286
\item $\psi \in FL(\varphi) \implies \neg \psi \in FL(\varphi)$
sawine@22
   287
\item $\psi \lor \chi \in FL(\varphi) \implies \psi, \chi \in FL(\varphi)$
sawine@22
   288
\item $X \psi \in FL(\varphi) \implies \psi \in FL(\varphi)$
sawine@22
   289
\item $\psi U \chi \in FL(\varphi) \implies \psi, \chi, X(\psi U \chi) \in FL(\varphi)$
sawine@22
   290
\end{itemize}
sawine@22
   291
%\end{multicols}
sawine@22
   292
\end{def:fs closure}
sawine@22
   293
sawine@22
   294
\noindent Let $FL(\varphi)$ be the closure of formula $\varphi$, we define a subset with the \emph{until}-formulae of the closure $\mathbb{U}_\varphi \subseteq FL(\varphi)$ where:
sawine@22
   295
\[\mathbb{U}_\varphi = \{\psi U \chi \in FL(\varphi)\} \text{ and } \mathbb{U}_{\varphi_i} \text{ denotes the $i^{th}$ element of } \mathbb{U_\varphi}\]
sawine@22
   296
sawine@22
   297
\begin{def:atoms}
sawine@23
   298
Let $\varphi$ be a formula and $FL(\varphi)$ its closure. $A \subseteq FL(\varphi)$ is an \emph{atom} if following holds:
sawine@22
   299
\begin{itemize}
sawine@23
   300
\item $\forall{\psi \in FL(\varphi)}: \psi \in A \iff \neg \psi \notin A$
sawine@23
   301
\item $\forall{\psi \lor \chi \in FL(\varphi)}: \psi \lor \chi \in A \iff \psi \in A$ or $\chi \in A$ 
sawine@23
   302
\item $\forall{\psi U \chi \in FL(\varphi)}: \psi U \chi \in A \iff \chi \in A$ or $\psi, X(\psi U \chi) \in A$ 
sawine@22
   303
\end{itemize}
sawine@23
   304
We define the set of all atoms of formula $\varphi$ with $\mathbb{AT}_\varphi = \{A \subseteq FL({\varphi}) \mid A \text{ is an atom}\}$.
sawine@22
   305
\end{def:atoms}
sawine@22
   306
sawine@22
   307
\noindent Now that we have the required ingredients, we begin with the construction of automaton $\A_\varphi$ for formula $\varphi$. Let $\A_\varphi = (\Sigma, S, S_0, \Delta, \{F_i\}_{i < k})$ with:
sawine@22
   308
\begin{itemize}
sawine@22
   309
\item $\Sigma = 2^{Voc(\varphi)}$
sawine@22
   310
\item $S = \mathbb{AT_\varphi}$
sawine@23
   311
\item $S_0 = \{A \in \mathbb{AT_\varphi} \mid \varphi \in A\}$
sawine@22
   312
%\item $(A, P, B) \in \Delta$ for $A, B \in \mathbb{AT_\varphi}$ and $P = A \cap Voc(\varphi) \iff (X \psi \in A \iff \psi \in B)$
sawine@23
   313
\item $\Delta = \{(A, P, \mathbb{B}) \mid A, \mathbb{B} \in \mathbb{AT_\varphi}, P = A \cap Voc(\varphi), X \psi \in A \iff \psi \in \mathbb{B}\}$
sawine@23
   314
\item $\forall{i \in \N, i < k = |\mathbb{U}_{FL(\varphi)}|}: F_i = \{A \in \mathbb{AT}_\varphi \mid \psi U \chi \notin A$ or $\chi \in A\}$
sawine@23
   315
\item $F_i = \{A \in \mathbb{AT}_\varphi \mid \psi U \chi = \mathbb{U}_{\varphi_i}, \psi U \chi \notin A$ or $\chi \in A\}$ and therefore $k = |\mathbb{U}_{\varphi}|$
sawine@22
   316
%Let $A, B \in \mathbb{AT}$ and $P \subseteq Voc(\varphi)$. Then $(A, P, B) \in \Delta$ iff the following holds:
sawine@22
   317
%$P = A \cap Voc(\varphi)$ and For all $X \psi \in CL(\varphi): X \psi \in A$ iff $\psi \in B$.
sawine@22
   318
\end{itemize}
sawine@22
   319
sawine@22
   320
\begin{thm:model language}
sawine@22
   321
Let $\M_\varphi = (\F, V_\varphi)$ be a model and $rep(\M_\varphi)$ its infinite representation word, then following holds:
sawine@23
   322
\[rep(\M_\varphi) \in L(\A_\varphi) \iff \M_\varphi,0 \models \varphi\]
sawine@22
   323
\end{thm:model language}
sawine@22
   324
\noindent
sawine@22
   325
\begin{proof}
sawine@22
   326
For the eloberate proof, consult \cite{ref:ltl&büchi}.
sawine@22
   327
\end{proof}
sawine@22
   328
sawine@21
   329
sawine@8
   330
\section{Model checking}
sawine@15
   331
sawine@19
   332
sawine@19
   333
\section{On-the-fly methods}
sawine@19
   334
sawine@0
   335
\begin{thebibliography}{99}
sawine@5
   336
\bibitem{ref:ltl&büchi} 
sawine@6
   337
\uppercase{M{\footnotesize adhavan} M{\footnotesize ukund}.}
sawine@5
   338
{\em Linear-Time Temporal Logic and B\"uchi Automata}.
sawine@2
   339
Winter School on Logic and Computer Science, Indian Statistical Institute, Calcutta, 1997.
sawine@0
   340
sawine@2
   341
\bibitem{ref:handbook} 
sawine@6
   342
\uppercase{P{\footnotesize atrick} B{\footnotesize lackburn}, 
sawine@6
   343
F{\footnotesize rank} W{\footnotesize olter and} J{\footnotesize ohan van} B{\footnotesize enthem}.}
sawine@2
   344
{\em Handbook of Modal Logic (Studies in Logic and Practical Reasoning)}.
sawine@3
   345
3rd Edition, Elsevier, Amsterdam, 2007.
sawine@7
   346
sawine@19
   347
\bibitem{ref:alternating verification} 
sawine@19
   348
\uppercase{M{\footnotesize oshe} Y. V{\footnotesize ardi}.}
sawine@19
   349
{\em Alternating Automata and Program Verification}.
sawine@19
   350
Computer Science Today, Volume 1000 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1995.
sawine@19
   351
sawine@7
   352
\bibitem{ref:infpaths}
sawine@7
   353
\uppercase{P{\footnotesize ierre} W{\footnotesize olper}, 
sawine@7
   354
M{\footnotesize oshe} Y. V{\footnotesize ardi and}
sawine@7
   355
A. P{\footnotesize rasad} S{\footnotesize istla}.}
sawine@7
   356
{\em Reasoning about Infinite Computation Paths}.
sawine@7
   357
In Proceedings of the 24th IEEE FOCS, 1983.
sawine@7
   358
sawine@0
   359
\end{thebibliography}
sawine@0
   360
\end{document}