slides/src/slides.tex
author Eugen Sawin <sawine@me73.com>
Tue, 19 Jul 2011 21:29:46 +0200
changeset 57 c8b38fab3d48
parent 56 7190dae7df06
child 58 8f4e103481ae
permissions -rw-r--r--
Some more definitions.
sawine@55
     1
\documentclass[9pt]{beamer}
sawine@55
     2
\usetheme{Boadilla}
sawine@55
     3
\usecolortheme{seagull}
sawine@55
     4
sawine@55
     5
\newcommand{\M}{\mathcal{M}}
sawine@55
     6
\newcommand{\N}{\mathbb{N}_0}
sawine@55
     7
\newcommand{\F}{\mathcal{F}}
sawine@57
     8
\newcommand{\Fs}{\mathbb{F}}
sawine@55
     9
\newcommand{\Prop}{\mathcal{P}}
sawine@55
    10
\newcommand{\A}{\mathcal{A}}
sawine@55
    11
\newcommand{\X}{\mathcal{X}}
sawine@55
    12
\newcommand{\U}{\mathcal{U}}
sawine@55
    13
\newcommand{\V}{\mathcal{V}}
sawine@55
    14
\newcommand{\dnf}{\mathsf{dnf}}
sawine@55
    15
\newcommand{\consq}{\mathsf{consq}}
sawine@55
    16
sawine@55
    17
\theoremstyle{definition} %plain, definition, remark, proof, corollary
sawine@55
    18
\newtheorem*{def:finite words}{Finite words}
sawine@55
    19
\newtheorem*{def:infinite words}{Infinite words}
sawine@55
    20
\newtheorem*{def:regular languages}{Regular languages}
sawine@55
    21
\newtheorem*{def:regular languages closure}{Regular closure}
sawine@55
    22
\newtheorem*{def:omega regular languages}{$\omega$-regular languages}
sawine@55
    23
\newtheorem*{def:omega regular languages closure}{$\omega$-regular closure}
sawine@55
    24
\newtheorem*{def:buechi automata}{Automaton}
sawine@56
    25
\newtheorem*{def:automata runs}{Run}
sawine@56
    26
\newtheorem*{def:inf}{Infinite occurrences}
sawine@55
    27
\newtheorem*{def:automata acceptance}{Acceptance}
sawine@56
    28
\newtheorem*{def:automata language}{Recognised language}
sawine@57
    29
\newtheorem*{def:general automata}{Generalised automaton}
sawine@55
    30
\newtheorem*{def:general acceptance}{Acceptance}
sawine@55
    31
\newtheorem*{def:vocabulary}{Vocabulary}
sawine@55
    32
\newtheorem*{def:frames}{Frames}
sawine@55
    33
\newtheorem*{def:models}{Models}
sawine@55
    34
\newtheorem*{def:satisfiability}{Satisfiability}
sawine@55
    35
\newtheorem*{def:fs closure}{Closure}
sawine@55
    36
\newtheorem*{def:atoms}{Atoms}
sawine@55
    37
\newtheorem*{def:rep function}{Representation function}
sawine@55
    38
\newtheorem*{def:next}{Next function}
sawine@55
    39
\newtheorem*{def:dnf}{Disjunctive normal form}
sawine@55
    40
\newtheorem*{def:positive formulae}{Positive formulae}
sawine@55
    41
\newtheorem*{def:consq}{Logical consequences}
sawine@55
    42
\newtheorem*{def:partial automata}{Partial automata}
sawine@55
    43
sawine@55
    44
\theoremstyle{plain}
sawine@55
    45
\newtheorem{prop:vocabulary sat}{Proposition}[section]
sawine@55
    46
\newtheorem{prop:general equiv}{Proposition}[section]
sawine@55
    47
\newtheorem{prop:computation set=language}{Proposition}[section]
sawine@55
    48
sawine@55
    49
\theoremstyle{plain}
sawine@55
    50
\newtheorem{thm:model language}{Theorem}[section]
sawine@55
    51
\newtheorem{cor:mod=model language}{Corollary}[thm:model language]
sawine@55
    52
\newtheorem{cor:mod=program language}[cor:mod=model language]{Corollary}
sawine@55
    53
\newtheorem{thm:model checking}{Theorem}[section]
sawine@55
    54
\newtheorem{lem:dnf}{Lemma}[section]
sawine@55
    55
\newtheorem{lem:consq}[lem:dnf]{Lemma}
sawine@55
    56
sawine@55
    57
\title[Algorithmic Verification]{Algorithmic Verification of Reactive Systems}
sawine@55
    58
\author{Eugen Sawin}
sawine@55
    59
\institute[University of Freiburg]
sawine@55
    60
{ 
sawine@55
    61
  Research Group for Foundations in Artificial Intelligence\\
sawine@55
    62
  Computer Science Department\\
sawine@55
    63
  University of Freiburg
sawine@55
    64
}
sawine@55
    65
\date[SS 2011]{Seminar: Automata Constructions in Model Checking}
sawine@55
    66
\subject{Model Checking}
sawine@55
    67
sawine@55
    68
\begin{document}
sawine@55
    69
\frame{\titlepage}
sawine@55
    70
\begin{frame}
sawine@55
    71
\frametitle{Motivation}
sawine@55
    72
\tableofcontents[currentsection]
sawine@55
    73
\end{frame}
sawine@55
    74
sawine@55
    75
\begin{frame}
sawine@55
    76
\frametitle{Infinity}
sawine@55
    77
\framesubtitle{A bit more information about this}
sawine@55
    78
\end{frame}
sawine@55
    79
sawine@55
    80
\begin{frame}
sawine@56
    81
\frametitle{Automata}
sawine@56
    82
\framesubtitle{Definition}
sawine@55
    83
\begin{def:buechi automata}
sawine@56
    84
A non-deterministic B\"uchi automaton is a tuple $\A = (\Sigma, S, S_0, \Delta, F)$ with:
sawine@55
    85
\begin{itemize}
sawine@57
    86
\item $\Sigma$ is a finite \emph{alphabet}.
sawine@57
    87
\item $S$ is a finite set of \emph{states}.
sawine@57
    88
\item $S_0 \subseteq S$ is the set of \emph{initial states}.
sawine@57
    89
\item $\Delta: S \times \Sigma \times S$ is a \emph{transition relation}.
sawine@57
    90
\item $F \subseteq S$ is the set of \emph{accepting states}.
sawine@55
    91
\end{itemize}
sawine@55
    92
\end{def:buechi automata}
sawine@55
    93
\end{frame}
sawine@55
    94
sawine@55
    95
\begin{frame}
sawine@56
    96
\frametitle{Automata}
sawine@56
    97
\framesubtitle{Runs}
sawine@56
    98
\begin{def:automata runs}
sawine@56
    99
Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton:
sawine@56
   100
\begin{itemize}
sawine@56
   101
\item A run $\rho$ of $\A$ on an infinite word $w = a_0,a_1,...$ is a sequence $\rho = s_0,s_1,...$:
sawine@56
   102
\begin{itemize}
sawine@57
   103
\item $s_0 \in S_0$.
sawine@57
   104
\item $(s_i, a_i, s_{i+1}) \in \Delta$, for all $i \geq 0$.
sawine@56
   105
\end{itemize}
sawine@57
   106
\item Alternative view of a run $\rho$ as a function $\rho : \N \to S$, with $\rho(i) = s_i$.
sawine@56
   107
\end{itemize}
sawine@56
   108
\end{def:automata runs}
sawine@56
   109
\end{frame}
sawine@56
   110
sawine@56
   111
\begin{frame}
sawine@56
   112
\frametitle{Automata}
sawine@56
   113
\framesubtitle{Acceptance}
sawine@56
   114
\begin{def:inf}
sawine@56
   115
Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $\A$:
sawine@56
   116
\begin{itemize}
sawine@56
   117
\item $\exists^\omega$ denotes the existential quantifier for infinitely many occurrences.
sawine@57
   118
\item $inf(\rho) = \{s \in S \mid \exists^\omega{n \in \N}: \rho(n) = s\}$.
sawine@56
   119
\end{itemize}
sawine@56
   120
\end{def:inf}
sawine@56
   121
sawine@56
   122
\begin{def:automata acceptance}
sawine@56
   123
Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $\A$:
sawine@56
   124
\begin{itemize}
sawine@56
   125
\item $\rho$ is \emph{accepting} iff $inf(\rho) \cap F \neq \emptyset$.
sawine@56
   126
\item $\A$ \emph{accepts} an input word $w$ iff there exists a run $\rho$ of $\A$ on $w$, such that $\rho$ is \emph{accepting}. 
sawine@56
   127
\end{itemize}
sawine@56
   128
\end{def:automata acceptance}
sawine@56
   129
\end{frame}
sawine@56
   130
sawine@56
   131
\begin{frame}
sawine@56
   132
\frametitle{Automata}
sawine@56
   133
\framesubtitle{Language}
sawine@56
   134
\begin{def:automata language}
sawine@56
   135
Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton:
sawine@56
   136
\begin{itemize}
sawine@57
   137
\item $L_\omega(\A) = \{w \in \Sigma^\omega \mid \A \text{ accepts } w\}$, we say $\A$ recognises language $L_\omega(\A)$.
sawine@57
   138
\item Language $L$ is \emph{B\"uchi-recognisable} iff there is an automaton $\A$ with $L = L_\omega(\A)$.
sawine@57
   139
\item The class of B\"uchi-recognisable languages corresponds to the class of $\omega$-regular languages.
sawine@56
   140
\end{itemize}
sawine@56
   141
\end{def:automata language}
sawine@56
   142
\end{frame}
sawine@56
   143
sawine@56
   144
\begin{frame}
sawine@57
   145
\frametitle{Generalised Automata}
sawine@57
   146
\framesubtitle{Definition}
sawine@57
   147
\begin{def:general automata}
sawine@57
   148
A \emph{generalised B\"uchi automaton} is a tuple $\A = (\Sigma, S, S_0, \Delta, \{F_i\}_{i<k})$:
sawine@57
   149
\begin{itemize}
sawine@57
   150
\item $\{F_i\}$ is a finite set of sets for a given $k$.
sawine@57
   151
\item Each $F_i \subseteq S$ is a finite set of accepting states.
sawine@57
   152
\end{itemize}
sawine@57
   153
\end{def:general automata}
sawine@57
   154
\end{frame}
sawine@57
   155
sawine@57
   156
\begin{frame}
sawine@57
   157
\frametitle{Generalised Automata}
sawine@57
   158
\framesubtitle{Acceptance}
sawine@57
   159
\begin{def:general acceptance}
sawine@57
   160
Let $\A = (\Sigma, S, S_0, \Delta, \{F_i\}_{i<k})$ be a generalised automaton and let $\rho$ be a run of $\A$:
sawine@57
   161
\begin{itemize}
sawine@57
   162
\item $\rho$ is \emph{accepting} iff $\forall{i < k}: inf(\rho) \cap F_i \neq \emptyset$.
sawine@57
   163
\item $\A$ \emph{accepts} an input word $w$ iff there exists a run $\rho$ of $\A$ on $w$, such that $\rho$ is \emph{accepting}. 
sawine@57
   164
\end{itemize} 
sawine@57
   165
\end{def:general acceptance}
sawine@57
   166
\end{frame}
sawine@57
   167
sawine@57
   168
\begin{frame}
sawine@57
   169
\frametitle{Generalised Automata}
sawine@57
   170
\framesubtitle{Language}
sawine@57
   171
\begin{prop:general equiv}
sawine@57
   172
Let $\A = (\Sigma, S, S_0, \Delta, \{F_i\}_{i < k})$ be a generalised automaton and let $\A_i = (\Sigma, S, S_0, \Delta, F_i)$ be non-deterministic automata, then following equivalence condition holds:
sawine@57
   173
\[L_\omega(\A) = \bigcap_{i < k} L_\omega(\A_i)\]
sawine@57
   174
\end{prop:general equiv}
sawine@57
   175
\end{frame}
sawine@57
   176
sawine@57
   177
\begin{frame}
sawine@55
   178
\frametitle{Linear Temporal Logic}
sawine@55
   179
\framesubtitle{A bit more information about this}
sawine@55
   180
\end{frame}
sawine@55
   181
sawine@55
   182
\begin{frame}
sawine@55
   183
\frametitle{Model Checking}
sawine@55
   184
\framesubtitle{A bit more information about this}
sawine@55
   185
sawine@55
   186
\end{frame}
sawine@55
   187
sawine@55
   188
\begin{frame}
sawine@55
   189
\frametitle{On-the-fly Methods}
sawine@55
   190
\framesubtitle{A bit more information about this}
sawine@55
   191
sawine@55
   192
\end{frame}
sawine@55
   193
sawine@55
   194
\begin{frame}[allowframebreaks]
sawine@55
   195
\frametitle<presentation>{Literature}    
sawine@55
   196
\begin{thebibliography}{10}    
sawine@55
   197
sawine@55
   198
\beamertemplatearticlebibitems
sawine@55
   199
\bibitem{ref:ltl&büchi}
sawine@55
   200
Madhavan Mukund.
sawine@55
   201
\newblock {\em Linear-Time Temporal Logic and B\"uchi Automata}.
sawine@55
   202
\newblock Winter School on Logic and Computer Science, Indian Statistical Institute, Calcutta, 1997.
sawine@55
   203
  
sawine@55
   204
\beamertemplatearticlebibitems
sawine@55
   205
\bibitem{ref:alternating verification}
sawine@55
   206
Moshe Y. Vardi.
sawine@55
   207
\newblock {\em Alternating Automata and Program Verification}.
sawine@55
   208
\newblock Computer Science Today, Volume 1000 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1995.
sawine@55
   209
sawine@55
   210
\beamertemplatebookbibitems
sawine@55
   211
\bibitem{ref:handbook}
sawine@55
   212
Patrick Blackburn and Frank Wolter and Johan van Benthem.
sawine@55
   213
\newblock {\em Handbook of Modal Logic}.
sawine@55
   214
\newblock 3rd Edition, Elsevier, Amsterdam, Chapter 11 P. 655-720 and Chapter 17 P. 975-989, 2007.
sawine@55
   215
sawine@55
   216
\end{thebibliography}
sawine@55
   217
\end{frame}
sawine@55
   218
sawine@55
   219
\end{document}