slides/src/slides.tex
author Eugen Sawin <sawine@me73.com>
Fri, 22 Jul 2011 15:52:20 +0200
changeset 68 1da31f35eae3
parent 67 46709047b260
child 69 3ebfd8683b18
permissions -rw-r--r--
Some more stuff.
     1 \documentclass[9pt]{beamer}
     2 \usetheme{Boadilla}
     3 \usecolortheme{dove}
     4 \usecolortheme{orchid}
     5 \usecolortheme{dolphin}
     6 %\usecolortheme{seagull}
     7 
     8 \usepackage{amsmath, amsthm, amssymb, amsfonts, verbatim}
     9 \usepackage{pifont}
    10 \usepackage{xcolor}
    11 \usepackage{ulem}
    12 \usepackage{graphics}
    13 \usepackage{tikz}
    14 \usetikzlibrary{automata}
    15 \usepackage{subfigure}
    16 
    17 \renewcommand{\emph}{\textit}
    18 \renewcommand{\em}{\it}
    19 
    20 \newcommand{\cross}{\ding{55}}
    21 \newcommand{\M}{\mathcal{M}}
    22 \newcommand{\N}{\mathbb{N}_0}
    23 \newcommand{\F}{\mathcal{F}}
    24 \newcommand{\Fs}{\mathbb{F}}
    25 \newcommand{\Prop}{\mathcal{P}}
    26 \newcommand{\A}{\mathcal{A}}
    27 \newcommand{\X}{\mathcal{X}}
    28 \newcommand{\U}{\mathcal{U}}
    29 \newcommand{\V}{\mathcal{V}}
    30 \newcommand{\dnf}{\mathsf{dnf}}
    31 \newcommand{\consq}{\mathsf{consq}}
    32 
    33 \theoremstyle{definition} %plain, definition, remark, proof, corollary
    34 \newtheorem*{def:finite words}{Finite words}
    35 \newtheorem*{def:infinite words}{Infinite words}
    36 \newtheorem*{def:regular languages}{Regular languages}
    37 \newtheorem*{def:regular languages closure}{Regular closure}
    38 \newtheorem*{def:omega regular languages}{$\omega$-regular languages}
    39 \newtheorem*{def:omega regular languages closure}{$\omega$-regular closure}
    40 \newtheorem*{def:buechi automata}{Automaton}
    41 \newtheorem*{def:automata runs}{Run}
    42 \newtheorem*{def:inf}{Infinite occurrences}
    43 \newtheorem*{def:automata acceptance}{Acceptance}
    44 \newtheorem*{def:automata language}{Recognised language}
    45 \newtheorem*{def:general automata}{Generalised automaton}
    46 \newtheorem*{def:general acceptance}{Acceptance}
    47 \newtheorem*{def:syntax}{Syntax}
    48 
    49 
    50 \newtheorem*{def:vocabulary}{Vocabulary}
    51 \newtheorem*{def:frames}{Frame}
    52 \newtheorem*{def:models}{Model}
    53 \newtheorem*{def:satisfiability}{Satisfiability}
    54 \newtheorem*{def:fs closure}{Closure}
    55 \newtheorem*{def:atoms}{Atoms}
    56 \newtheorem*{def:rep function}{Representation function}
    57 \newtheorem*{def:next}{Next function}
    58 \newtheorem*{def:dnf}{Disjunctive normal form}
    59 \newtheorem*{def:positive formulae}{Positive formulae}
    60 \newtheorem*{def:consq}{Logical consequences}
    61 \newtheorem*{def:partial automata}{Partial automata}
    62 
    63 \theoremstyle{plain}
    64 \newtheorem{prop:vocabulary sat}{Proposition}[section]
    65 \newtheorem{prop:general equiv}{Proposition}[section]
    66 \newtheorem{prop:computation set=language}{Proposition}[section]
    67 
    68 \theoremstyle{plain}
    69 \newtheorem{thm:model language}{Theorem}[section]
    70 \newtheorem{cor:mod=model language}{Corollary}[thm:model language]
    71 \newtheorem{cor:mod=program language}[cor:mod=model language]{Corollary}
    72 \newtheorem{thm:model checking}{Theorem}[section]
    73 \newtheorem{lem:dnf}{Lemma}[section]
    74 \newtheorem{lem:consq}[lem:dnf]{Lemma}
    75 
    76 \title[Algorithmic Verification]{Algorithmic Verification of Reactive Systems}
    77 \author{Eugen Sawin}
    78 \institute[University of Freiburg]
    79 { 
    80   Research Group for Foundations in Artificial Intelligence\\
    81   Computer Science Department\\
    82   University of Freiburg
    83 }
    84 \date[SS 2011]{Seminar: Automata Constructions in Model Checking}
    85 \subject{Model Checking}
    86 
    87 \begin{document}
    88 \frame{\titlepage}
    89 
    90 \begin{frame}
    91 \frametitle{Motivation}
    92 \framesubtitle{Model Checking 1/2}
    93 \begin{center}
    94 %\only<1>{\colorbox{black}{\makebox(35,10){\color{white} $\M \models \varphi$}}}
    95 \[\M \models \varphi\]
    96 \end{center}
    97 \end{frame}
    98 
    99 \begin{frame}
   100 \frametitle{Motivation}
   101 \framesubtitle{Model Checking 2/2}
   102 \begin{center}
   103 Given a program $P$ and specification $\varphi$:\\
   104 \colorbox{black}{\makebox(150,10){\color{white} does every run of $P$ satisfy $\varphi$?}}
   105 \end{center}
   106 \end{frame}
   107 
   108 \begin{frame}
   109 \frametitle{Motivation}
   110 \framesubtitle{Industry}
   111 \begin{figure}
   112 \centering
   113 \subfigure{\includegraphics[width=70pt,height=50pt]{images/intel.jpg}}
   114 \subfigure{\includegraphics[width=70pt,height=50pt]{images/airbag.jpg}}
   115 \subfigure{\includegraphics[width=70pt,height=50pt]{images/atc.jpg}}
   116 \end{figure}
   117 \end{frame}
   118 
   119 {
   120 \setbeamercolor{normal text}{bg=black, fg=white}
   121 \setbeamercolor{frametitle}{fg=white!30!black}
   122 \usebeamercolor*{normal text} 
   123 \usebeamercolor*{frametitle} 
   124 \begin{frame}
   125 \frametitle{Linear Temporal Logic}
   126 \framesubtitle{Motivation 1/2}
   127 \begin{center}
   128 ``It is dark.''\\
   129 \visible<2->{``It is \emph{always} dark.''\\}
   130 \visible<3->{``It is \emph{currently} dark.''\\}
   131 \visible<4->{``It will \emph{eventually} be dark.''\\}
   132 \visible<5->{``It is dark \emph{until} someone puts the light on.''}
   133 \end{center}
   134 \end{frame}
   135 }
   136 
   137 \begin{frame}
   138 \frametitle{Linear Temporal Logic}
   139 \framesubtitle{Motivation 2/2}
   140 \begin{center}
   141 \only<1->{
   142 \color{white}
   143 \colorbox{black}{\makebox(50,10){It is dark}} \colorbox{orange}{\makebox(30,10){until}} \colorbox{black!30}{\makebox(50,10){there is light}}\\
   144 \visible<2->{
   145 \colorbox{black}{\makebox(50,10){$p_0$}} \colorbox{orange}{\makebox(30,10){$\U$}} \colorbox{black!30}{\makebox(50,10){$p_1$}}}
   146 }
   147 \end{center}
   148 \end{frame}
   149 
   150 \begin{frame}
   151 \frametitle{Linear Temporal Logic}
   152 \framesubtitle{Syntax}
   153 \begin{def:syntax}
   154 Let $\Prop$ be the countable set of \emph{atomic propositions}, LTL-formulae $\varphi$ are defined using following productions:
   155 \[\varphi ::= p \in \Prop \,|\, \neg \varphi \,|\, \varphi \lor \varphi \,|\, \X \varphi \,|\, \varphi \U \varphi\]
   156 \begin{itemize}
   157 \item $\neg, \lor$ corresponds to the Boolean \emph{negation} and \emph{disjunction}.
   158 \item $\X$ reads \emph{next}.
   159 \item $\U$ reads \emph{until}.
   160 \end{itemize}
   161 \end{def:syntax}
   162 \end{frame}
   163 
   164 \begin{frame}
   165 \frametitle{Linear Temporal Logic}
   166 \framesubtitle{Semantics}
   167 \begin{def:frames}
   168 An LTL-\emph{frame} is a tuple $\F = (S, R)$:
   169 \begin{itemize}
   170 \item $S = \{s_i \mid i \in \N\}$ is the set of states.
   171 \item $R = \{(s_i, s_{i+1}) \mid i \in \N\}$ is the accessibility relation.
   172 \end{itemize} 
   173 \end{def:frames}
   174 
   175 \begin{def:models}
   176 An LTL-\emph{model} is a tuple $\M = (\F, V)$:
   177 \begin{itemize}
   178 \item $\F$ is a \emph{frame}.
   179 \item $V: S \to 2^\Prop$ is a \emph{valuation function}.
   180 \item Intuitively we say $p \in \Prop$ is \emph{true} at time instant $i$ iff $p \in V(i)$. 
   181 \end{itemize}
   182 \end{def:models}
   183 \end{frame}
   184 
   185 \begin{frame}
   186 \frametitle{Linear Temporal Logic}
   187 \framesubtitle{Model Example}
   188 \begin{figure}
   189 \centering
   190 \begin{tikzpicture}[shorten >=1pt, node distance=2.5cm, auto, semithick, >=stealth   
   191     ,accepting/.style={fill, gray!50!black, text=white}]
   192 \node[state, initial, initial text=] (s_0) {$\{p_0\}$};
   193 \path (s_0) [late options={label=below:$s_0$}];
   194 \node[state] (s_1) [right of= s_0] {$\{p_0, p_2\}$};
   195 \path (s_1) [late options={label=below:$s_1$}];
   196 \node[state] (s_2) [right of= s_1] {$\{p_1\}$};
   197 \path (s_2) [late options={label=below:$s_2$}];
   198 \node[state] (s_i) [right of= s_2] {$\{p_1\}$};
   199 \path (s_i) [late options={label=below:$s_i$}];
   200 \path[->] 
   201 (s_0) edge node {$R$} (s_1) 
   202 (s_1) edge node {$R$} (s_2);
   203 \path[dashed,->] 
   204 (s_2) edge node {$R$} (s_i); 
   205 \end{tikzpicture}
   206 \end{figure}
   207 \end{frame}
   208 
   209 \begin{frame}
   210 \frametitle{Linear Temporal Logic}
   211 \framesubtitle{Satisfiability}
   212 \begin{def:satisfiability}
   213 A model $\M = (\F, V)$ \emph{satisfies} a formula $\varphi$ at time instant $i$ is denoted by $\M,i \models \varphi$:
   214 \begin{itemize}
   215 \item $\M,i \models p$ for $p \in \Prop \iff p \in V(i)$
   216 \item $\M,i \models \neg \varphi \iff$ not $\M,i \models \varphi$
   217 \item $\M,i \models \varphi \lor \psi \iff \M,i \models \varphi$ or $\M,i \models \psi$
   218 \item $\M,i \models \X \varphi \iff \M,i+1 \models \varphi$
   219 \item $\M,i \models \varphi \U \psi \iff \exists{k \geq i}: \M,k \models \psi$ and $\forall{i \leq j < k}: \M,j \models\varphi$
   220 \end{itemize}
   221 \end{def:satisfiability}
   222 \end{frame}
   223 
   224 \begin{frame}
   225 \frametitle{Infinity}
   226 \framesubtitle{Word as function}
   227 \begin{figure}
   228 \centering
   229 \begin{tikzpicture}[shorten >=1pt, node distance=1.5cm, semithick, >=stealth   
   230     ,accepting/.style={fill, gray!50!black, text=white}]
   231 \node[state, initial, initial text=] (s_0) {$a$};
   232 \node[state] (s_1) [right of= s_0] {$b$};
   233 \node[state] (s_2) [right of= s_1] {$a$};
   234 \node[state] (s_i) [right of= s_2] {$a$};
   235 \path[->] 
   236 (s_0) edge node {} (s_1) 
   237 (s_1) edge node {} (s_2);
   238 \path[dashed,->] 
   239 (s_2) edge node {} (s_i); 
   240 \end{tikzpicture}
   241 \end{figure}
   242 \end{frame}
   243 
   244 \begin{frame}
   245 \frametitle{Automata}
   246 \framesubtitle{Example 1/2}
   247 \begin{figure}
   248 \centering
   249 \only<-3>{
   250 \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   251     %every state/.style={fill, draw=none, gray, text=white},
   252     ,accepting/.style={fill, gray!50!black, text=white}
   253     %initial/.style ={gray, text=white}]%,  thick]
   254     ]
   255 \node[state,initial, initial text=] (q_0) {$q_0$};
   256 \node[state] (q_1) [above right of= q_0] {$q_1$};
   257 \node[state,accepting](q_2) [below right of= q_1] {$q_2$};
   258 \path[->] 
   259 (q_0) edge node {$a$} (q_1)
   260   edge [loop above] node {$b$} ()
   261 (q_1) edge node {$b$} (q_2)
   262   edge [loop above] node {$a$} ()
   263 (q_2) %edge node {$a$} (q_1)
   264   edge node {$b$} (q_0);
   265 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);
   266 \end{tikzpicture}\\
   267 \vspace{10pt}
   268 \visible<2-3>{$w_1 = \overline{bbaa} \implies \rho_1 = q_0q_0\overline{q_0q_1q_1q_2}$}\\
   269 \visible<3>{$w_2 = bb\overline{ab} \implies \rho_2 = q_0q_0\overline{q_1q_2}$}\\
   270 \vspace{10pt}
   271 \visible<4>{Accepts all inputs with infinite occurrences of $ab$.}
   272 }
   273 
   274 \only<4>{
   275 \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   276     %every state/.style={fill, draw=none, gray, text=white},
   277     ,accepting/.style={fill, gray!50!black, text=white}
   278     %initial/.style ={gray, text=white}]%,  thick]
   279     ]
   280 \node[state,initial, initial text=] (q_0) {$q_0$};
   281 \node[state] (q_1) [above right of= q_0] {$q_1$};
   282 \node[state,accepting](q_2) [below right of= q_1] {$q_2$};
   283 \path[->] 
   284 (q_0) 
   285   edge [loop above] node {$b$} ()
   286 (q_1) 
   287   edge [loop above] node {$a$} ()
   288 (q_2) %edge node {$a$} (q_1)
   289   edge node {$b$} (q_0);
   290 \color{green}
   291 \path[->] 
   292 (q_0) edge node {$a$} (q_1) 
   293 (q_1) edge node {$b$} (q_2);
   294 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);
   295 \end{tikzpicture}\\
   296 \color{black}
   297 \vspace{10pt}
   298 \visible<2->{$w_1 = \overline{\textcolor{green}{b}ba\textcolor{green}{a}} \implies \rho_1 = q_0q_0\overline{q_0q_1q_1\textcolor{green}{q_2}}$}\\
   299 \visible<3->{$w_2 = bb\overline{\textcolor{green}{ab}} \implies \rho_2 = q_0q_0\overline{q_1\textcolor{green}{q_2}}$}\\
   300 \vspace{10pt}
   301 \visible<4>{Accepts all inputs with infinite occurrences of $ab$.}
   302 }
   303 %Automaton $\A_1$
   304 \end{figure}
   305 \end{frame}
   306 
   307 \begin{frame}
   308 \frametitle{Automata}
   309 \framesubtitle{Example 2/2 (Complement)}
   310 \begin{figure}
   311 \centering
   312 \only<1>{
   313   \subfigure
   314             {
   315               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   316                   %every state/.style={fill, draw=none, gray, text=white},
   317                   ,accepting/.style={fill, gray!50!black, text=white}
   318                   %initial/.style ={gray, text=white}]%,  thick]
   319                 ]
   320                 \node[state,initial, initial text=, accepting] (q_0) {$q_0$};
   321                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   322                 \node[state](q_2) [below right of= q_1] {$q_2$};
   323                 \path[->] 
   324                 (q_0) edge node {$a$} (q_1)
   325                 edge [loop above] node {$b$} ()
   326                 (q_1) edge node {$b$} (q_2)
   327                 edge [loop above] node {$a$} ()
   328                 (q_2) %edge node {$a$} (q_1)
   329                 edge node {$b$} (q_0);
   330                 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);
   331               \end{tikzpicture}
   332             }
   333 }
   334 \only<2>{ 
   335   \subfigure
   336             {
   337               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   338                   %every state/.style={fill, draw=none, gray, text=white},
   339                   ,accepting/.style={fill, gray!50!black, text=white}
   340                   %initial/.style ={gray, text=white}]%,  thick]
   341                 ]
   342                 \node[state,initial, initial text=, accepting] (q_0) {$q_0$};
   343                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   344                 \node[state](q_2) [below right of= q_1] {$q_2$};
   345                 \path[->] 
   346                 (q_0) 
   347                 edge [loop above] node {$b$} ()
   348                 (q_1) 
   349                 edge [loop above] node {$a$} ();                
   350                 \color{red}  
   351                 \path[->] 
   352                 (q_0) edge node {$a$} (q_1)
   353                 (q_1) edge node {$b$} (q_2)
   354                 (q_2) edge node {$b$} (q_0);  
   355                 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);              
   356               \end{tikzpicture}  \color{red}  
   357             }
   358  \color{black}
   359 }
   360 \only<3->{ \setcounter{subfigure}{0} 
   361   \subfigure[Complement automaton \cross]
   362             {
   363               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   364                   %every state/.style={fill, draw=none, gray, text=white},
   365                   ,accepting/.style={fill, gray!50!black, text=white}
   366                   %initial/.style ={gray, text=white}]%,  thick]
   367                 ]
   368                 \node[state,initial, initial text=, accepting] (q_0) {$q_0$};
   369                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   370                 \node[state](q_2) [below right of= q_1] {$q_2$};
   371                 \path[->] 
   372                 (q_0) 
   373                 edge [loop above] node {$b$} ()
   374                 (q_1) 
   375                 edge [loop above] node {$a$} ();                
   376                 \path[->] 
   377                 (q_0) edge node {$a$} (q_1)
   378                 (q_1) edge node {$b$} (q_2)
   379                 (q_2) edge node {$b$} (q_0);  
   380                 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);              
   381               \end{tikzpicture}  \color{red}  
   382             }
   383  \color{black}
   384 }
   385 %\hspace{10pt}
   386 \visible<3->{
   387   \subfigure[Complement automaton \checkmark]
   388             {
   389               \label{fig:complement automaton}
   390               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth   
   391                   ,accepting/.style={fill, gray!50!black, text=white}]
   392                 \node[state, initial, initial text=] (q_0) {$q_0$};
   393                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   394                 \node[state, accepting](q_2) [below right of= q_1] {$q_2$};
   395                 \path[->] 
   396                 (q_0) edge node {$a$} (q_1)
   397                 edge node {$b$} (q_2)
   398                 edge [loop above] node {$a, b$} ()
   399                 (q_1) edge [loop above] node {$a$} ()
   400                 (q_2) 
   401                 edge [loop above] node {$b$} ();
   402               \end{tikzpicture}\color{green}  
   403             }\\
   404 \color{black}  
   405 \vspace{20pt}
   406 Accepts all inputs with finite many $ab$.
   407 }
   408 %\caption{Automata from Example \ref{ex:automaton}}
   409 \end{figure}
   410 \end{frame}
   411 \color{black}  
   412 
   413 \begin{frame}
   414 \frametitle{Automata}
   415 \framesubtitle{Definition}
   416 \begin{def:buechi automata}
   417 A non-deterministic B\"uchi automaton is a tuple $\A = (\Sigma, S, S_0, \Delta, F)$ with:
   418 \begin{itemize}
   419 \item $\Sigma$ is a finite \emph{alphabet}.
   420 \item $S$ is a finite set of \emph{states}.
   421 \item $S_0 \subseteq S$ is the set of \emph{initial states}.
   422 \item $\Delta: S \times \Sigma \times S$ is a \emph{transition relation}.
   423 \item $F \subseteq S$ is the set of \emph{accepting states}.
   424 \end{itemize}
   425 \end{def:buechi automata}
   426 \end{frame}
   427 
   428 \begin{frame}
   429 \frametitle{Automata}
   430 \framesubtitle{Runs}
   431 \begin{def:automata runs}
   432 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton:
   433 \begin{itemize}
   434 \item A run $\rho$ of $\A$ on an infinite word $w = a_0,a_1,...$ is a sequence $\rho = s_0,s_1,...$:
   435 \begin{itemize}
   436 \item $s_0 \in S_0$.
   437 \item $(s_i, a_i, s_{i+1}) \in \Delta$, for all $i \geq 0$.
   438 \end{itemize}
   439 \item Alternative view of a run $\rho$ as a function $\rho : \N \to S$, with $\rho(i) = s_i$.
   440 \end{itemize}
   441 \end{def:automata runs}
   442 \visible<2->{\[w_1 = \overline{\textcolor{green}{b}ba\textcolor{green}{a}} \implies \rho_1 = q_0q_0\overline{q_0q_1q_1\textcolor{green}{q_2}}\]
   443 \[w_2 = bb\overline{\textcolor{green}{ab}} \implies \rho_2 = q_0q_0\overline{q_1\textcolor{green}{q_2}}\]}
   444 \end{frame}
   445 
   446 \begin{frame}
   447 \frametitle{Automata}
   448 \framesubtitle{Acceptance}
   449 \begin{def:inf}
   450 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $\A$:
   451 \begin{itemize}
   452 \item $\exists^\omega$ denotes the existential quantifier for \emph{infinitely} many occurrences.
   453 \item $inf(\rho) = \{s \in S \mid \exists^\omega{n \in \N}: \rho(n) = s\}$.
   454 \end{itemize}
   455 \end{def:inf}
   456 
   457 \begin{def:automata acceptance}
   458 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $\A$:
   459 \begin{itemize}
   460 \item $\rho$ is \emph{accepting} iff $inf(\rho) \cap F \neq \emptyset$.
   461 \item $\A$ \emph{accepts} an input word $w$ iff there exists a run $\rho$ of $\A$ on $w$, such that $\rho$ is accepting. 
   462 \end{itemize}
   463 \end{def:automata acceptance}
   464 \end{frame}
   465 
   466 \begin{frame}
   467 \frametitle{Automata}
   468 \framesubtitle{Language}
   469 \begin{def:automata language}
   470 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton:
   471 \begin{itemize}
   472 \item $L_\omega(\A) = \{w \in \Sigma^\omega \mid \A \text{ accepts } w\}$, we say $\A$ recognises language $L_\omega(\A)$.
   473 \item Language $L$ is \emph{B\"uchi-recognisable} iff there is an automaton $\A$ with $L = L_\omega(\A)$.
   474 \end{itemize}
   475 \end{def:automata language}
   476 \end{frame}
   477 
   478 \begin{frame}
   479 \frametitle{Generalised Automata}
   480 \begin{def:general automata}
   481 A \emph{generalised B\"uchi automaton} is a tuple $\A_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i<k})$:
   482 \begin{itemize}
   483 \item $\{F_i\}$ is a finite set of sets for a given $k$.
   484 \item Each $F_i \subseteq S$ is a finite set of accepting states.
   485 \end{itemize}
   486 \end{def:general automata}
   487 
   488 \begin{def:general acceptance}
   489 Let $\A_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i<k})$ be a generalised automaton and let $\rho$ be a run of $\A_G$:
   490 \begin{itemize}
   491 \item $\rho$ is \emph{accepting} iff $\forall{i < k}: inf(\rho) \cap F_i \neq \emptyset$.
   492 \item $\A_G$ \emph{accepts} an input word $w$ iff there exists a run $\rho$ of $\A_G$ on $w$, such that $\rho$ is accepting. 
   493 \end{itemize} 
   494 \end{def:general acceptance}
   495 
   496 \begin{prop:general equiv}
   497 Let $\A_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i < k})$ be a generalised automaton and let $\A_i = (\Sigma, S, S_0, \Delta, F_i)$ be non-deterministic automata:
   498 \[L_\omega(\A_G) = \bigcap_{i < k} L_\omega(\A_i)\]
   499 \end{prop:general equiv}
   500 \end{frame}
   501 
   502 \begin{frame}
   503 \frametitle{Automata Construction}
   504 \framesubtitle{Formula automata}
   505 \begin{center}
   506 Model $\M_\varphi$ for formula $\varphi$\\
   507 $\Downarrow$\\
   508 Closure $CL(\varphi)$ of $\varphi$\\
   509 $\Downarrow$\\
   510 Automaton $\A_\varphi$ for $\varphi$\\
   511 \vspace{20pt}
   512 \textcolor{red}{On-the-fly methods} \`a la Gerth et al.
   513 \end{center}
   514 \end{frame}
   515 
   516 \begin{frame}
   517 \frametitle{Automata Construction}
   518 \framesubtitle{System automata}
   519 \begin{center}
   520 Model $\M_\varphi$ for formula $\varphi$\\
   521 $\Downarrow$\\
   522 Closure $CL(\varphi)$ of $\varphi$\\
   523 $\Downarrow$\\
   524 Automaton $\A_\varphi$ for $\varphi$
   525 \end{center}
   526 \end{frame}
   527 
   528 \begin{frame}
   529 \frametitle{Model Checking}
   530 \framesubtitle{Definition}
   531 \begin{thm:model checking}
   532 \label{thm:model checking}
   533 Let $\A_P$ be the automaton for program $P$ and let $\A_\varphi$ be the automaton for formula $\varphi$.\\
   534 P satisfies $\varphi$ iff:
   535 \begin{itemize}
   536 \item $L_\omega(\A_P) \subseteq L_\omega(\A_\varphi)$.
   537 \item $L_\omega(\A_P) \cap L_\omega(\A_{\neg \varphi}) = \emptyset$.
   538 \end{itemize}
   539 \end{thm:model checking}
   540 \end{frame}
   541 
   542 \begin{frame}
   543 \frametitle{On-the-fly Methods}
   544 \framesubtitle{A bit more information about this}
   545 
   546 \end{frame}
   547 
   548 \begin{frame}[allowframebreaks]
   549 \frametitle<presentation>{Literature}    
   550 \begin{thebibliography}{10}    
   551 
   552 \beamertemplatearticlebibitems
   553 \bibitem{ref:ltl&büchi}
   554 Madhavan Mukund.
   555 \newblock {\em Linear-Time Temporal Logic and B\"uchi Automata}.
   556 \newblock Winter School on Logic and Computer Science, Indian Statistical Institute, Calcutta, 1997.
   557   
   558 \beamertemplatearticlebibitems
   559 \bibitem{ref:alternating verification}
   560 Moshe Y. Vardi.
   561 \newblock {\em Alternating Automata and Program Verification}.
   562 \newblock Computer Science Today, Volume 1000 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1995.
   563 
   564 \beamertemplatebookbibitems
   565 \bibitem{ref:handbook}
   566 Patrick Blackburn and Frank Wolter and Johan van Benthem.
   567 \newblock {\em Handbook of Modal Logic}.
   568 \newblock 3rd Edition, Elsevier, Amsterdam, Chapter 11 P. 655-720 and Chapter 17 P. 975-989, 2007.
   569 
   570 \end{thebibliography}
   571 \end{frame}
   572 
   573 \end{document}