slides/src/slides.tex
author Eugen Sawin <sawine@me73.com>
Fri, 22 Jul 2011 23:11:53 +0200
changeset 73 271b2a5270c1
parent 72 722ec2a3cabe
child 74 9938ea8ed067
permissions -rw-r--r--
Almost finished.
     1 \documentclass[9pt]{beamer}
     2 \usetheme{Boadilla}
     3 \usecolortheme{dove}
     4 \usecolortheme{orchid}
     5 \usecolortheme{dolphin}
     6 %\usecolortheme{seagull}
     7 
     8 \usepackage{amsmath, amsthm, amssymb, amsfonts, verbatim}
     9 \usepackage{pifont}
    10 \usepackage{multicol}
    11 \usepackage{xcolor}
    12 \usepackage{ulem}
    13 \usepackage{graphics}
    14 \usepackage{tikz}
    15 \usetikzlibrary{automata}
    16 \usepackage{subfigure}
    17 
    18 \renewcommand{\emph}{\textit}
    19 \renewcommand{\em}{\it}
    20 
    21 \newcommand{\cross}{\ding{55}}
    22 \newcommand{\M}{\mathcal{M}}
    23 \newcommand{\N}{\mathbb{N}_0}
    24 \newcommand{\F}{\mathcal{F}}
    25 \newcommand{\Fs}{\mathbb{F}}
    26 \newcommand{\Prop}{\mathcal{P}}
    27 \newcommand{\A}{\mathcal{A}}
    28 \newcommand{\X}{\mathcal{X}}
    29 \newcommand{\U}{\mathcal{U}}
    30 \newcommand{\V}{\mathcal{V}}
    31 \newcommand{\dnf}{\mathsf{dnf}}
    32 \newcommand{\consq}{\mathsf{consq}}
    33 
    34 \theoremstyle{definition} %plain, definition, remark, proof, corollary
    35 \newtheorem*{def:finite words}{Finite words}
    36 \newtheorem*{def:infinite words}{Infinite words}
    37 \newtheorem*{def:regular languages}{Regular languages}
    38 \newtheorem*{def:regular languages closure}{Regular closure}
    39 \newtheorem*{def:omega regular languages}{$\omega$-regular languages}
    40 \newtheorem*{def:omega regular languages closure}{$\omega$-regular closure}
    41 \newtheorem*{def:buechi automata}{Automaton}
    42 \newtheorem*{def:automata runs}{Run}
    43 \newtheorem*{def:inf}{Infinite occurrences}
    44 \newtheorem*{def:automata acceptance}{Acceptance}
    45 \newtheorem*{def:automata language}{Recognised language}
    46 \newtheorem*{def:general automata}{Generalised automaton}
    47 \newtheorem*{def:general acceptance}{Acceptance}
    48 \newtheorem*{def:syntax}{Syntax}
    49 \newtheorem*{def:program}{Program}
    50 \newtheorem*{def:program automaton}{System automaton}
    51 
    52 \newtheorem*{def:vocabulary}{Vocabulary}
    53 \newtheorem*{def:frames}{Frame}
    54 \newtheorem*{def:models}{Model}
    55 \newtheorem*{def:satisfiability}{Satisfiability}
    56 \newtheorem*{def:fs closure}{Closure}
    57 \newtheorem*{def:atoms}{Atoms}
    58 \newtheorem*{def:rep function}{Representation function}
    59 \newtheorem*{def:next}{Next function}
    60 \newtheorem*{def:dnf}{Disjunctive normal form}
    61 \newtheorem*{def:positive formulae}{Positive formulae}
    62 \newtheorem*{def:consq}{Logical consequences}
    63 \newtheorem*{def:partial automata}{Partial automata}
    64 
    65 \theoremstyle{plain}
    66 \newtheorem{prop:vocabulary sat}{Proposition}[section]
    67 \newtheorem{prop:general equiv}{Proposition}[section]
    68 \newtheorem{prop:computation set=language}{Proposition}[section]
    69 
    70 \theoremstyle{plain}
    71 \newtheorem{thm:model language}{Theorem}[section]
    72 \newtheorem{cor:mod=model language}{Corollary}[thm:model language]
    73 \newtheorem{cor:mod=program language}[cor:mod=model language]{Corollary}
    74 \newtheorem{thm:model checking}{Theorem}[section]
    75 \newtheorem{lem:dnf}{Lemma}[section]
    76 \newtheorem{lem:consq}[lem:dnf]{Lemma}
    77 
    78 \title[Algorithmic Verification]{Algorithmic Verification of Reactive Systems}
    79 \author{Eugen Sawin}
    80 \institute[University of Freiburg]
    81 { 
    82   Research Group for Foundations in Artificial Intelligence\\
    83   Computer Science Department\\
    84   University of Freiburg
    85 }
    86 \date[SS 2011]{Seminar: Automata Constructions in Model Checking}
    87 \subject{Model Checking}
    88 
    89 \begin{document}
    90 \frame{\titlepage}
    91 
    92 \begin{frame}
    93 \frametitle{Motivation}
    94 \framesubtitle{Model Checking 1/2}
    95 \begin{center}
    96 %\only<1>{\colorbox{black}{\makebox(35,10){\color{white} $\M \models \varphi$}}}
    97 \[\M \models \varphi\]
    98 \end{center}
    99 \end{frame}
   100 
   101 \begin{frame}
   102 \frametitle{Motivation}
   103 \framesubtitle{Model Checking 2/2}
   104 \begin{center}
   105 Given a program $P$ and specification $\varphi$:\\
   106 \colorbox{black}{\makebox(150,10){\color{white} does every run of $P$ satisfy $\varphi$?}}
   107 \end{center}
   108 \end{frame}
   109 
   110 \begin{frame}
   111 \frametitle{Motivation}
   112 \framesubtitle{Industry}
   113 \begin{figure}
   114 \centering
   115 \only<1>{
   116 \subfigure{\includegraphics[width=70pt,height=50pt]{images/intel.jpg}}
   117 \subfigure{\includegraphics[width=70pt,height=50pt]{images/airbag.jpg}}
   118 \subfigure{\includegraphics[width=70pt,height=50pt]{images/atc.jpg}}
   119 }
   120 \only<2>{
   121 \subfigure{\includegraphics[width=20pt,height=10pt]{images/intel2.jpg}}
   122 }
   123 \end{figure}
   124 \end{frame}
   125 
   126 {
   127 \setbeamercolor{normal text}{bg=black, fg=white}
   128 \setbeamercolor{frametitle}{fg=white!30!black}
   129 \usebeamercolor*{normal text} 
   130 \usebeamercolor*{frametitle} 
   131 \begin{frame}
   132 \frametitle{Linear Temporal Logic}
   133 \framesubtitle{Natural language 1/2}
   134 \begin{center}
   135 ``It is dark.''\\
   136 \visible<2->{``It is \emph{always} dark.''\\}
   137 \visible<3->{``It is \emph{currently} dark.''\\}
   138 \visible<4->{``It will \emph{necessarily} be dark.''\\}
   139 \visible<5->{``It is dark \emph{until} someone puts the light on.''}
   140 \end{center}
   141 \end{frame}
   142 }
   143 
   144 \begin{frame}
   145 \frametitle{Linear Temporal Logic}
   146 \framesubtitle{Natural language 2/2}
   147 \begin{center}
   148 \only<1->{
   149 \color{white}
   150 \colorbox{black}{\makebox(50,10){It is dark}} \colorbox{orange}{\makebox(30,10){until}} \colorbox{black!30}{\makebox(50,10){there is light}}\\
   151 \visible<2->{
   152 \colorbox{black}{\makebox(50,10){$p_0$}} \colorbox{orange}{\makebox(30,10){$\U$}} \colorbox{black!30}{\makebox(50,10){$p_1$}}}
   153 }
   154 \end{center}
   155 \end{frame}
   156 
   157 \begin{frame}
   158 \frametitle{Linear Temporal Logic}
   159 \framesubtitle{Syntax}
   160 \begin{def:syntax}
   161 Let $\Prop$ be the countable set of \emph{atomic propositions}, LTL-formulae $\varphi$ are defined using following productions:
   162 \[\varphi ::= p \in \Prop \,|\, \neg \varphi \,|\, \varphi \lor \varphi \,|\, \X \varphi \,|\, \varphi \U \varphi\]
   163 \begin{itemize}
   164 \item $\neg, \lor$ corresponds to the Boolean \emph{negation} and \emph{disjunction}.
   165 \item $\X$ reads \emph{next}.
   166 \item $\U$ reads \emph{until}.
   167 \end{itemize}
   168 \end{def:syntax}
   169 \end{frame}
   170 
   171 \begin{frame}
   172 \frametitle{Linear Temporal Logic}
   173 \framesubtitle{Semantics}
   174 \begin{def:frames}
   175 An LTL-\emph{frame} is a tuple $\F = (S, R)$:
   176 \begin{itemize}
   177 \item $S = \{s_i \mid i \in \N\}$ is the set of states.
   178 \item $R = \{(s_i, s_{i+1}) \mid i \in \N\}$ is the accessibility relation.
   179 \end{itemize} 
   180 \end{def:frames}
   181 
   182 \begin{def:models}
   183 An LTL-\emph{model} is a tuple $\M = (\F, V)$:
   184 \begin{itemize}
   185 \item $\F$ is a \emph{frame}.
   186 \item $V: S \to 2^\Prop$ is a \emph{valuation function}.
   187 \item Intuitively we say $p \in \Prop$ is \emph{true} at time instant $i$ iff $p \in V(i)$. 
   188 \end{itemize}
   189 \end{def:models}
   190 \end{frame}
   191 
   192 \begin{frame}
   193 \frametitle{Linear Temporal Logic}
   194 \framesubtitle{Model Example}
   195 \begin{figure}
   196 \centering
   197 \begin{tikzpicture}[shorten >=1pt, node distance=2.5cm, auto, semithick, >=stealth   
   198     ,accepting/.style={fill, gray!50!black, text=white}]
   199 \node[state, initial, initial text=] (s_0) {$\{p_0\}$};
   200 \path (s_0) [late options={label=below:$s_0$}];
   201 \node[state] (s_1) [right of= s_0] {$\{p_0, p_2\}$};
   202 \path (s_1) [late options={label=below:$s_1$}];
   203 \node[state] (s_2) [right of= s_1] {$\{p_1\}$};
   204 \path (s_2) [late options={label=below:$s_2$}];
   205 \node[state] (s_i) [right of= s_2] {$\{p_1\}$};
   206 \path (s_i) [late options={label=below:$s_i$}];
   207 \path[->] 
   208 (s_0) edge node {$R$} (s_1) 
   209 (s_1) edge node {$R$} (s_2);
   210 \path[dashed,->] 
   211 (s_2) edge node {$R$} (s_i); 
   212 \end{tikzpicture}
   213 \end{figure}
   214 \end{frame}
   215 
   216 \begin{frame}
   217 \frametitle{Linear Temporal Logic}
   218 \framesubtitle{Satisfiability}
   219 \begin{def:satisfiability}
   220 A model $\M = (\F, V)$ \emph{satisfies} a formula $\varphi$ at time instant $i$ is denoted by $\M,i \models \varphi$:
   221 \begin{itemize}
   222 \item $\M,i \models p$ for $p \in \Prop \iff p \in V(i)$
   223 \item $\M,i \models \neg \varphi \iff$ not $\M,i \models \varphi$
   224 \item $\M,i \models \varphi \lor \psi \iff \M,i \models \varphi$ or $\M,i \models \psi$
   225 \item $\M,i \models \X \varphi \iff \M,i+1 \models \varphi$
   226 \item $\M,i \models \varphi \U \psi \iff \exists{k \geq i}: \M,k \models \psi$ and $\forall{i \leq j < k}: \M,j \models\varphi$
   227 \end{itemize}
   228 \end{def:satisfiability}
   229 \end{frame}
   230 
   231 \begin{frame}
   232 \frametitle{Reactive Systems}
   233 \framesubtitle{Infinite inputs}
   234 \begin{center}
   235 \begin{figure}
   236 \setcounter{subfigure}{0} 
   237 \subfigure[Terminating program]{
   238 \begin{tikzpicture}[shorten >=1pt, node distance=1.5cm, semithick, >=stealth   
   239     ,accepting/.style={fill, gray!50!black, text=white}]
   240 \node[state, initial, initial text=$input$] (p) {$P$};
   241 \coordinate (b) at (1,0);
   242         %\coordinate (b) at ($(a)+1/2*(3,3)$);
   243 \draw (p) edge[->] node[right] {$\hspace{8pt}output$} (b);
   244 %\draw[->] (p) -- (b);
   245 \end{tikzpicture}
   246 }
   247 \hspace{10pt}
   248 \visible<2>{\subfigure[Reactive program]{
   249 \begin{tikzpicture}[shorten >=1pt, node distance=1.5cm, semithick, >=stealth   
   250     ,accepting/.style={fill, gray!50!black, text=white}]
   251 \node[state, initial, initial text=$event$] (p) {$RP$};
   252 \coordinate (b) at (1.1,0);
   253         %\coordinate (b) at ($(a)+1/2*(3,3)$);
   254 \path[->]
   255 (p) edge [loop right] node {$action$} ();
   256 \end{tikzpicture}
   257 }}
   258 \end{figure}
   259 \end{center}
   260 \end{frame}
   261 
   262 \begin{frame}
   263 \frametitle{Automata}
   264 \framesubtitle{Example 1/2}
   265 \begin{figure}
   266 \centering
   267 \only<-3>{
   268 \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   269     %every state/.style={fill, draw=none, gray, text=white},
   270     ,accepting/.style={fill, gray!50!black, text=white}
   271     %initial/.style ={gray, text=white}]%,  thick]
   272     ]
   273 \node[state,initial, initial text=] (q_0) {$q_0$};
   274 \node[state] (q_1) [above right of= q_0] {$q_1$};
   275 \node[state,accepting](q_2) [below right of= q_1] {$q_2$};
   276 \path[->] 
   277 (q_0) edge node {$a$} (q_1)
   278   edge [loop above] node {$b$} ()
   279 (q_1) edge node {$b$} (q_2)
   280   edge [loop above] node {$a$} ()
   281 (q_2) %edge node {$a$} (q_1)
   282   edge node {$b$} (q_0);
   283 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);
   284 \end{tikzpicture}\\
   285 \vspace{10pt}
   286 \visible<2-3>{$w_1 = \overline{bbaa} \implies \rho_1 = q_0q_0\overline{q_0q_1q_1q_2}$}\\
   287 \visible<3>{$w_2 = bb\overline{ab} \implies \rho_2 = q_0q_0\overline{q_1q_2}$}\\
   288 \vspace{10pt}
   289 \visible<4>{Accepts all inputs with infinite occurrences of $ab$.}
   290 }
   291 
   292 \only<4>{
   293 \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   294     %every state/.style={fill, draw=none, gray, text=white},
   295     ,accepting/.style={fill, gray!50!black, text=white}
   296     %initial/.style ={gray, text=white}]%,  thick]
   297     ]
   298 \node[state,initial, initial text=] (q_0) {$q_0$};
   299 \node[state] (q_1) [above right of= q_0] {$q_1$};
   300 \node[state,accepting](q_2) [below right of= q_1] {$q_2$};
   301 \path[->] 
   302 (q_0) 
   303   edge [loop above] node {$b$} ()
   304 (q_1) 
   305   edge [loop above] node {$a$} ()
   306 (q_2) %edge node {$a$} (q_1)
   307   edge node {$b$} (q_0);
   308 \color{green}
   309 \path[->] 
   310 (q_0) edge node {$a$} (q_1) 
   311 (q_1) edge node {$b$} (q_2);
   312 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);
   313 \end{tikzpicture}\\
   314 \color{black}
   315 \vspace{10pt}
   316 \visible<2->{$w_1 = \overline{\textcolor{green}{b}ba\textcolor{green}{a}} \implies \rho_1 = q_0q_0\overline{q_0q_1q_1\textcolor{green}{q_2}}$}\\
   317 \visible<3->{$w_2 = bb\overline{\textcolor{green}{ab}} \implies \rho_2 = q_0q_0\overline{q_1\textcolor{green}{q_2}}$}\\
   318 \vspace{10pt}
   319 \visible<4>{Accepts all inputs with infinite occurrences of $ab$.}
   320 }
   321 %Automaton $\A_1$
   322 \end{figure}
   323 \end{frame}
   324 
   325 \begin{frame}
   326 \frametitle{Automata}
   327 \framesubtitle{Example 2/2 (Complement)}
   328 \begin{figure}
   329 \centering
   330 \only<1>{
   331   \subfigure
   332             {
   333               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   334                   %every state/.style={fill, draw=none, gray, text=white},
   335                   ,accepting/.style={fill, gray!50!black, text=white}
   336                   %initial/.style ={gray, text=white}]%,  thick]
   337                 ]
   338                 \node[state,initial, initial text=, accepting] (q_0) {$q_0$};
   339                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   340                 \node[state](q_2) [below right of= q_1] {$q_2$};
   341                 \path[->] 
   342                 (q_0) edge node {$a$} (q_1)
   343                 edge [loop above] node {$b$} ()
   344                 (q_1) edge node {$b$} (q_2)
   345                 edge [loop above] node {$a$} ()
   346                 (q_2) %edge node {$a$} (q_1)
   347                 edge node {$b$} (q_0);
   348                 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);
   349               \end{tikzpicture}
   350             }
   351 }
   352 \only<2>{ 
   353   \subfigure
   354             {
   355               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   356                   %every state/.style={fill, draw=none, gray, text=white},
   357                   ,accepting/.style={fill, gray!50!black, text=white}
   358                   %initial/.style ={gray, text=white}]%,  thick]
   359                 ]
   360                 \node[state,initial, initial text=, accepting] (q_0) {$q_0$};
   361                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   362                 \node[state](q_2) [below right of= q_1] {$q_2$};
   363                 \path[->] 
   364                 (q_0) 
   365                 edge [loop above] node {$b$} ()
   366                 (q_1) 
   367                 edge [loop above] node {$a$} ();                
   368                 \color{red}  
   369                 \path[->] 
   370                 (q_0) edge node {$a$} (q_1)
   371                 (q_1) edge node {$b$} (q_2)
   372                 (q_2) edge node {$b$} (q_0);  
   373                 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);              
   374               \end{tikzpicture}  \color{red}  
   375             }
   376  \color{black}
   377 }
   378 \only<3->{ \setcounter{subfigure}{0} 
   379   \subfigure[Complement automaton \cross]
   380             {
   381               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   382                   %every state/.style={fill, draw=none, gray, text=white},
   383                   ,accepting/.style={fill, gray!50!black, text=white}
   384                   %initial/.style ={gray, text=white}]%,  thick]
   385                 ]
   386                 \node[state,initial, initial text=, accepting] (q_0) {$q_0$};
   387                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   388                 \node[state](q_2) [below right of= q_1] {$q_2$};
   389                 \path[->] 
   390                 (q_0) 
   391                 edge [loop above] node {$b$} ()
   392                 (q_1) 
   393                 edge [loop above] node {$a$} ();                
   394                 \path[->] 
   395                 (q_0) edge node {$a$} (q_1)
   396                 (q_1) edge node {$b$} (q_2)
   397                 (q_2) edge node {$b$} (q_0);  
   398                 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);              
   399               \end{tikzpicture}  \color{red}  
   400             }
   401  \color{black}
   402 }
   403 %\hspace{10pt}
   404 \visible<3->{
   405   \subfigure[Complement automaton \checkmark]
   406             {
   407               \label{fig:complement automaton}
   408               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth   
   409                   ,accepting/.style={fill, gray!50!black, text=white}]
   410                 \node[state, initial, initial text=] (q_0) {$q_0$};
   411                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   412                 \node[state, accepting](q_2) [below right of= q_1] {$q_2$};
   413                 \path[->] 
   414                 (q_0) edge node {$a$} (q_1)
   415                 edge node {$b$} (q_2)
   416                 edge [loop above] node {$a, b$} ()
   417                 (q_1) edge [loop above] node {$a$} ()
   418                 (q_2) 
   419                 edge [loop above] node {$b$} ();
   420               \end{tikzpicture}\color{green}  
   421             }\\
   422 \color{black}  
   423 \vspace{20pt}
   424 Accepts all inputs with finite many $ab$.
   425 }
   426 %\caption{Automata from Example \ref{ex:automaton}}
   427 \end{figure}
   428 \end{frame}
   429 \color{black}  
   430 
   431 \begin{frame}
   432 \frametitle{Automata}
   433 \framesubtitle{Definition}
   434 \begin{def:buechi automata}
   435 A non-deterministic B\"uchi automaton is a tuple $\A = (\Sigma, S, S_0, \Delta, F)$ with:
   436 \begin{itemize}
   437 \item $\Sigma$ is a finite \emph{alphabet}.
   438 \item $S$ is a finite set of \emph{states}.
   439 \item $S_0 \subseteq S$ is the set of \emph{initial states}.
   440 \item $\Delta: S \times \Sigma \times S$ is a \emph{transition relation}.
   441 \item $F \subseteq S$ is the set of \emph{accepting states}.
   442 \end{itemize}
   443 \end{def:buechi automata}
   444 \end{frame}
   445 
   446 \begin{frame}
   447 \frametitle{Automata}
   448 \framesubtitle{Runs}
   449 \begin{def:automata runs}
   450 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton:
   451 \begin{itemize}
   452 \item A run $\rho$ of $\A$ on an infinite word $w = a_0,a_1,...$ is a sequence $\rho = s_0,s_1,...$:
   453 \begin{itemize}
   454 \item $s_0 \in S_0$.
   455 \item $(s_i, a_i, s_{i+1}) \in \Delta$, for all $i \geq 0$.
   456 \end{itemize}
   457 \item Alternative view of a run $\rho$ as a function $\rho : \N \to S$, with $\rho(i) = s_i$.
   458 \end{itemize}
   459 \end{def:automata runs}
   460 \visible<2->{\[w_1 = \overline{\textcolor{green}{b}ba\textcolor{green}{a}} \implies \rho_1 = q_0q_0\overline{q_0q_1q_1\textcolor{green}{q_2}}\]
   461 \[w_2 = bb\overline{\textcolor{green}{ab}} \implies \rho_2 = q_0q_0\overline{q_1\textcolor{green}{q_2}}\]}
   462 \end{frame}
   463 
   464 \begin{frame}
   465 \frametitle{Automata}
   466 \framesubtitle{Acceptance}
   467 \begin{def:inf}
   468 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $\A$:
   469 \begin{itemize}
   470 \item $\exists^\omega$ denotes the existential quantifier for \emph{infinitely} many occurrences.
   471 \item $inf(\rho) = \{s \in S \mid \exists^\omega{n \in \N}: \rho(n) = s\}$.
   472 \end{itemize}
   473 \end{def:inf}
   474 
   475 \begin{def:automata acceptance}
   476 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $\A$:
   477 \begin{itemize}
   478 \item $\rho$ is \emph{accepting} iff $inf(\rho) \cap F \neq \emptyset$.
   479 \item $\A$ \emph{accepts} an input word $w$ iff there exists a run $\rho$ of $\A$ on $w$, such that $\rho$ is accepting. 
   480 \end{itemize}
   481 \end{def:automata acceptance}
   482 \end{frame}
   483 
   484 \begin{frame}
   485 \frametitle{Automata}
   486 \framesubtitle{Language}
   487 \begin{def:automata language}
   488 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton:
   489 \begin{itemize}
   490 \item $L_\omega(\A) = \{w \in \Sigma^\omega \mid \A \text{ accepts } w\}$, we say $\A$ recognises language $L_\omega(\A)$.
   491 \item Language $L$ is \emph{B\"uchi-recognisable} iff there is an automaton $\A$ with $L = L_\omega(\A)$.
   492 \end{itemize}
   493 \end{def:automata language}
   494 \end{frame}
   495 
   496 \begin{frame}
   497 \frametitle{Generalised Automata}
   498 \begin{def:general automata}
   499 A \emph{generalised B\"uchi automaton} is a tuple $\A_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i<k})$:
   500 \begin{itemize}
   501 \item $\{F_i\}$ is a finite set of sets for a given $k$.
   502 \item Each $F_i \subseteq S$ is a finite set of accepting states.
   503 \end{itemize}
   504 \end{def:general automata}
   505 
   506 \begin{def:general acceptance}
   507 Let $\A_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i<k})$ be a generalised automaton and let $\rho$ be a run of $\A_G$:
   508 \begin{itemize}
   509 \item $\rho$ is \emph{accepting} iff $\forall{i < k}: inf(\rho) \cap F_i \neq \emptyset$.
   510 \item $\A_G$ \emph{accepts} an input word $w$ iff there exists a run $\rho$ of $\A_G$ on $w$, such that $\rho$ is accepting. 
   511 \end{itemize} 
   512 \end{def:general acceptance}
   513 
   514 \begin{prop:general equiv}
   515 Let $\A_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i < k})$ be a generalised automaton and let $\A_i = (\Sigma, S, S_0, \Delta, F_i)$ be non-deterministic automata:
   516 \[L_\omega(\A_G) = \bigcap_{i < k} L_\omega(\A_i)\]
   517 \end{prop:general equiv}
   518 \end{frame}
   519 
   520 \begin{frame}
   521 \frametitle{Automata Construction}
   522 \framesubtitle{Formula automata}
   523 \begin{center}
   524 Model $\M_\varphi$ for formula $\varphi$\\
   525 $\Downarrow$\\
   526 Closure $CL(\varphi)$ of $\varphi$\\
   527 $\Downarrow$\\
   528 Automaton $\A_\varphi$ for $\varphi$\\
   529 \vspace{20pt}
   530 \visible<2>{\textcolor{red}{On-the-fly methods} \`a la Gerth et al.}
   531 \end{center}
   532 \end{frame}
   533 
   534 \begin{frame}
   535 \frametitle{Automata Construction}
   536 \framesubtitle{System automata 1/2}
   537 \begin{def:program}
   538 Given a program $P = (S_P, s_0, R, V)$:
   539 \begin{itemize}
   540 \begin{multicols}{2}
   541 \item $S$ is the set of possible states.
   542 \item $s_0$ is the initial state.
   543 \item $R : S \times \Prop \times S$ is the transition relation.
   544 \item $V : S \to 2^\Prop$ is a valuation function.
   545 \end{multicols}
   546 \end{itemize}
   547 A \emph{computation} of $P$ is a run $\rho = (V(s_0), V(s_1), ...)$. 
   548 \end{def:program}
   549 
   550 \begin{def:program automaton}
   551 We construct automaton $\A_P = (\Sigma, S, S_0, \Delta, F)$ for program $P$:
   552 \begin{itemize}
   553 \begin{multicols}{2}
   554 \item $\Sigma = 2^\Prop$
   555 \item $S = S_P$
   556 \item $S_0 = \{s_0\}$
   557 \item $F = S$
   558 \end{multicols}
   559 \vspace{-1.1em}
   560 \item $\Delta = \{(s, V(s), s') \mid \exists{a \in \Prop}: (s, a, s') \in R\}$
   561 \end{itemize}
   562 \end{def:program automaton}
   563 \end{frame}
   564 
   565 \begin{frame}
   566 \frametitle{Automata Construction}
   567 \framesubtitle{System automata 2/2}
   568 \begin{prop:computation set=language}
   569 Let $\A_P = (\Sigma, S, S_0, \Delta, F)$, note that $F = S$, it follows:
   570 \[L_\omega(\A_P) = \{\rho \mid \rho \text{ is a run of } \A_P\}\]
   571 \end{prop:computation set=language}
   572 \end{frame}
   573 
   574 \begin{frame}
   575 \frametitle{Verification}
   576 \begin{center}
   577 Given a program $P$ and specification $\varphi$:\\
   578 \colorbox{black}{\makebox(150,10){\color{white}
   579 \only<1>{does every run of $P$ satisfy $\varphi$?}
   580 \only<2>{$L_\omega(\A_P) \subseteq L_\omega(\A_\varphi)$}
   581 \only<3>{$L_\omega(\A_P) \cap L_\omega(\A_{\neg \varphi}) = \emptyset$}}}
   582 \end{center}
   583 \end{frame}
   584 
   585 \begin{frame}[allowframebreaks]
   586 \frametitle<presentation>{Literature}    
   587 \begin{thebibliography}{10}    
   588 
   589 %\beamertemplatearticlebibitems
   590 \bibitem{ref:ltl&büchi}
   591 Madhavan Mukund.
   592 \newblock {\em Linear-Time Temporal Logic and B\"uchi Automata}.
   593 \newblock Winter School on Logic and Computer Science, Indian Statistical Institute, Calcutta, 1997.
   594   
   595 %\beamertemplatearticlebibitems
   596 \bibitem{ref:alternating verification}
   597 Moshe Y. Vardi.
   598 \newblock {\em Alternating Automata and Program Verification}.
   599 \newblock Computer Science Today, Volume 1000 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1995.
   600 
   601 \bibitem{ref:on-the-fly verification} 
   602 Rob Gerth, Doron Peled, Moshe Y. Vardi and Pierre Wolper.
   603 \newblock {\em Simple On-the-fly Automatic Verification of Linear Temporal Logic}.
   604 \newblock Proceeding IFIO/WG6.1 Symposium on Protocol Specification, Testing and Verification, Warsaw, 1995.
   605 
   606 \beamertemplatebookbibitems
   607 \bibitem{ref:handbook}
   608 Patrick Blackburn, Frank Wolter and Johan van Benthem.
   609 \newblock {\em Handbook of Modal Logic}.
   610 \newblock 3rd Edition, Elsevier, Amsterdam, Chapter 11 P. 655-720 and Chapter 17 P. 975-989, 2007.
   611 
   612 \beamertemplatearticlebibitems
   613 \bibitem{ref:automated verification} 
   614 Moshe Y. Vardi.
   615 \newblock {\em Automated Verification: Graphs, Logic and Automata}.
   616 \newblock Proceeding of the International Joint Conference on Artificial Intelligence, Acapulco, 2003.
   617 
   618 \end{thebibliography}
   619 \end{frame}
   620 
   621 \end{document}