paper/src/paper.tex
author Eugen Sawin <sawine@me73.com>
Tue, 28 Jun 2011 00:16:13 +0200
changeset 14 68fff3a1453e
parent 13 b3f554e2a593
child 15 8a3d0605adf5
permissions -rw-r--r--
Some more LTL content.
     1 \documentclass[a4paper, pagesize, DIV=calc, smallheadings]{article}  
     2 \usepackage{graphicx}
     3 %\usepackage[latin1]{inputenc}
     4 \usepackage{amsmath, amsthm, amssymb, amsfonts, verbatim}
     5 \usepackage{typearea}
     6 \usepackage{algorithm}
     7 \usepackage{algorithmic}
     8 %\usepackage{fullpage}
     9 %\usepackage[T1]{fontenc}
    10 %\usepackage{arev}
    11 
    12 %\pagestyle{headings}
    13 \renewcommand{\familydefault}{\sfdefault}
    14 \title{\uppercase{\textbf{\Large{A}\large{lgorithmic} \Large{V}\large{erification of} \Large{R}\large{eactive} \Large{S}\large{ystems}}\\
    15 \tiny{Draft}
    16 }}
    17 \author{
    18 \uppercase{{\small{E}\scriptsize{UGEN} \small{S}\scriptsize{AWIN}}\\
    19 {\em \small{U}\scriptsize{NIVERSITY OF} \small{F}\scriptsize{REIBURG}}\\
    20 %{\em \small{C}\scriptsize{omputer} \small{S}\scriptsize{cience} \small{D}\scriptsize{epartment}}\\
    21 {\em \small{G}\scriptsize{ERMANY}}}\\
    22 %\texttt{\footnotesize{sawine@informatik.uni-freiburg.de}}
    23 }
    24 \date{\textsc{\hfill}}
    25 
    26 \theoremstyle{definition} %plain, definition, remark
    27 \newtheorem*{def:finite words}{Finite words}
    28 \newtheorem*{def:infinite words}{Infinite words}
    29 \newtheorem*{def:regular languages}{Regular languages}
    30 \newtheorem*{def:regular languages closure}{Regular closure}
    31 \newtheorem*{def:omega regular languages}{$\omega$-regular languages}
    32 \newtheorem*{def:omega regular languages closure}{$\omega$-regular closure}
    33 \newtheorem*{def:buechi automata}{Automata}
    34 \newtheorem*{def:automata runs}{Runs}
    35 \newtheorem*{def:automata acceptance}{Acceptance}
    36 \newtheorem*{def:vocabulary}{Vocabulary}
    37 
    38 \newtheorem{prop:vocabulary sat}{Proposition}
    39 \begin{document}
    40 
    41 \maketitle
    42 \thispagestyle{empty}
    43 %\itshape
    44 %\renewcommand\abstractname{Abstract} 
    45 \begin{abstract}
    46 Over the past two decades, temporal logic has become a very basic tool for spec-
    47 ifying properties of reactive systems. For finite-state systems, it is possible to use
    48 techniques based on B\"uchi automata to verify if a system meets its specifications.
    49 This is done by synthesizing an automaton which generates all possible models of
    50 the given specification and then verifying if the given system refines this most gen-
    51 eral automaton. In these notes, we present a self-contained introduction to the basic
    52 techniques used for this automated verification. We also describe some recent space-
    53 efficient techniques which work on-the-fly.
    54 \end{abstract}
    55 %\normalfont
    56 \newpage
    57 \section{Introduction}
    58 Program verification is a fundamental area of study in computer science. The broad goal
    59 is to verify whether a program is ``correct''--i.e., whether the implementation of a program
    60 meets its specification. This is, in general, too ambitious a goal and several assumptions
    61 have to be made in order to render the problem tractable. In these lectures, we will focus
    62 on the verification of finite-state reactive programs. For specifying properties of programs,
    63 we use linear time temporal logic.
    64 
    65 What is a reactive program? The general pattern along which a conventional program
    66 executes is the following: it accepts an input, performs some computation, and yields an
    67 output. Thus, such a program can be viewed as an abstract function from an input domain
    68 to an output domain whose behaviour consists of a transformation from initial states to
    69 final states.
    70 
    71 In contrast, a reactive program is not expected to terminate. As the name suggests, such
    72 systems “react” to their environment on a continuous basis, responding appropriately to
    73 each input. Examples of such systems include operating systems, schedulers, discrete-event
    74 controllers etc. (Often, reactive systems are complex distributed programs, so concurrency
    75 also has to be taken into account. We will not stress on this aspect in these lectures—we
    76 take the view that a run of a distributed system can be represented as a sequence, by
    77 arbitrarily interleaving concurrent actions.)
    78 
    79 To specify the behaviour of a reactive system, we need a mechanism for talking about
    80 the way the system evolves along potentially infinite computations. Temporal logic 
    81 has become a well-established formalism for this purpose. Many varieties of temporal logic
    82 have been defined in the past twenty years—we focus on propositional linear time temporal
    83 logic (LTL).
    84 
    85 There is an intimate connection between models of LTL formulas and languages of
    86 infinite words—the models of an LTL formula constitute an ω-regular language over an
    87 appropriate alphabet. As a result, the satisfiability problem for LTL reduces to checking
    88 for emptiness of ω-regular languages. This connection was first explicitly pointed out in.
    89 
    90 \section{$\omega$-regular languages}
    91 \begin{def:finite words}
    92 Let $\Sigma$ be a non-empty set of symbols, called the alphabet. $\Sigma^*$ is the set of all \emph{finite} words over $\Sigma$. A \emph{finite} word $w \in \Sigma^*$ is a \emph{finite} sequence $v_0,...,v_{n-1}$ of symbols from alphabet $\Sigma$ with length $n = |w|$. $\varepsilon$ denotes the empty word with length $|\varepsilon| = 0$.
    93 \end{def:finite words}
    94 
    95 \begin{def:regular languages}
    96 The class of regular languages is defined recursively over an alphabet $\Sigma$:
    97 \begin{itemize}
    98 \item $\emptyset$ is regular
    99 \item $\{\varepsilon\}$ is regular
   100 \item $\forall_{a \in \Sigma}:\{a\}$ is regular
   101 \end{itemize}
   102 \end{def:regular languages}
   103 
   104 \begin{def:regular languages closure}
   105 Let $L_{R_1}, L_{R_2} \in \Sigma^*$ be regular. The class of regular languages is closed under following operations:
   106 \begin{itemize}
   107 \item $L_{R_1}^*$
   108 \item $L_{R_1} \circ L_{R_2}$
   109 \item $L_{R_1} \cup L_{R_2}$
   110 \item $L_{R_1} \cap L_{R_2}$
   111 \item $\overline{L}_{R_1}$ and therefore $L_{R_1} - L_{R_2}$
   112 \end{itemize}
   113 \end{def:regular languages closure}
   114 
   115 \begin{def:infinite words}
   116 $\Sigma^\omega$ is the set of all \emph{infinite} words over $\Sigma$. An \emph{infinite} word $w \in \Sigma^\omega$ is an \emph{infinite} sequence $v_0,...,v_\infty$ with length $\infty$. To address the elements of the infinite sequence $w$, we view the word as a function $w : \mathbb{N}_0 \to \Sigma$ with $w(i) = v_i$; thus $w(i)$ denotes the symbol at sequence position $i$ of word $w$; another notation used for $w(i)$ is $w_i$.
   117 \end{def:infinite words}
   118 
   119 \begin{def:omega regular languages}
   120 Set $L$ is an $\omega$-language over alphabet $\Sigma$ iff $L \subseteq \Sigma^\omega$. Let $L_R \subseteq \Sigma^*$ be a non-empty regular finite language and $\varepsilon \notin L_R$. A set $L$ is $\omega$-regular iff $L$ is an $\omega$-language and $L = L_R^\omega$.
   121 \end{def:omega regular languages}
   122 
   123 \begin{def:omega regular languages closure}
   124 Let $L_{\omega_1}, L_{\omega_2} \subseteq \Sigma^\omega$ be $\omega$-regular languages. The class of $\omega$-regular languages is closed under following operations:
   125 \begin{itemize}
   126 \item $L_R \circ L_{\omega_1}$, but \emph{not} $L_{\omega_1} \circ L_R$
   127 \item $L_{\omega_1} \cup L_{\omega_2}$, but only \emph{finitely} many times
   128 \end{itemize}
   129 \end{def:omega regular languages closure}
   130 
   131 
   132 \section{B\"uchi automata}
   133 \begin{def:buechi automata}
   134 A non-deterministic B\"uchi automaton is a tuple $A = (\Sigma, S, S_0, \Delta, F)$, where $\Sigma$ is a finite non-empty \emph{alphabet}, $S$ is a finite non-empty set of \emph{states}, $S_0 \subseteq S$ is the set of \emph{initial states}, $F \subseteq S$ is the set of \emph{accepting states} and $\Delta: S \times \Sigma \times S$ is a \emph{transition relation}. When suitable we will use the arrow notation for the transitions, where $s \xrightarrow{a} s' \iff (s, a, s') \in \Delta$.
   135 
   136 A deterministic B\"uchi automaton is a specialisation where the \emph{transition relation} $\Delta$ is a \emph{transition function} $\delta: S \times \Sigma \to S$ and the set $S_0$ of \emph{initial states} contains only a single state $s_0$.
   137 
   138 Within this text \emph{automata/automaton} will refer to non-deterministic B\"uchi automata/automaton, unless otherwise noted. 
   139 \end{def:buechi automata}
   140 
   141 \begin{def:automata runs}
   142 Let $A = (\Sigma, S, S_0, \Delta, F)$ be an automaton, a run $\rho$ of $A$ on an infinite word $w = a_0,a_1,...$ over alphabet $\Sigma$ is a sequence $\rho = s_0,s_1,...$, where $s_0 \in S_0$ and $(s_i, a_i, s_{i+1}) \in \Delta$, for all $i \geq 0$. Again we may view the run sequence as a function $\rho : \mathbb{N}_0 \to S$, where $\rho(i) = s_i$ denotes the state at the $i^{th}$ sequence position.
   143 \end{def:automata runs}
   144 
   145 \begin{def:automata acceptance}
   146 Let $A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $A$, we define $inf(\rho) = \{s \in S \mid \exists^\omega{n \in \mathbb{N}_0}: \rho(n) = s\}$, where $\exists^\omega$ denotes the existential quantifier for infinitely many occurances, i.e., $s$ occurs infinitely often in $\rho$.
   147 
   148 The run $\rho$ is \emph{accepting}, iff $inf(\rho) \cap F \neq \emptyset$, i.e., there exists an \emph{accepting state} which occurs infinitely often in the run $\rho$. The automaton $A$ \emph{accepts} an input word $w$, iff there exists a run $\rho$ of $A$ on $w$, such that $\rho$ is \emph{accepting}. The language $L_\omega(A)$ recognised by automaton $A$ is the set of all infinite words accepted by $A$.
   149 \end{def:automata acceptance}
   150 
   151 \section{Linear temporal logic}
   152 \subsection*{Sytnax}
   153 Let $P$ be the countable set of \emph{atomic propositions}. The \emph{alphabet} of the language $L_{LTL}(P)$ is $P \cup \{\neg, \lor, X, U\}$. We define the $L_{LTL}(P)$-\emph{formulae} $\varphi$ using following productions:
   154 \[\varphi ::= p \in P \,|\, \neg \varphi \,|\, \varphi \lor \varphi \,|\, X \varphi \,|\, \varphi U \varphi\]
   155 
   156 \subsection*{Interpretation}
   157 The intuition should go as follows: $\neg$ and $\lor$ correspond to the Boolean \emph{negation} and \emph{disjunction}, the unary temporal operator $X$ reads as \emph{next} and the binary temporal operator $U$ reads as \emph{until}.
   158 
   159 LTL is interpreted over \emph{computation paths}, where a computation corrensponds to a model over a \emph{Kripke-frame} constructed by the order of natural numbers.
   160 
   161 \subsection*{Semantics}
   162 A \emph{model} is a function $M: \mathbb{N}_0 \to 2^P$ over \emph{frame} $F$. The frame constitutes a linear order over $\mathbb{N}_0$, which corresponds to the linear temporal progression from \emph{now/before} to \emph{later}. Therefore $M(i)$ assigns a set of \emph{positive atomic propositions} to each state of time instant $i$. Intuitively we say $p \in P$ is \emph{true} at time instant $i$, iff $p \in M(i)$.
   163 
   164 A model $M$ \emph{satisfies} an LTL-formula $\varphi$ at time instant $i$ is denoted by $M,i \models \varphi$. Satisfaction of a formula $\varphi$ is defined inductively over the structure of $\varphi$:
   165 \begin{itemize}
   166 \item $M,i \models p$ for $p \in P$ iff $p \in M(i)$
   167 \item $M,i \models \neg \varphi$ iff not $M,i \models \varphi$
   168 \item $M,i \models \varphi \lor \psi$ iff $M,i \models \varphi$ or $M,i \models \psi$
   169 \item $M,i \models X \varphi$ iff $M,i+1 \models \varphi$
   170 \item $M,i \models \varphi U \psi$ iff $\exists{k \geq i}: M,k \models \psi$ and $\forall{i \leq j < k}: M,j \models\varphi$
   171 \end{itemize}
   172 
   173 \begin{def:vocabulary}
   174 Let $\varphi$ be a LTL-formula over atomic propositions $P$, we define the \emph{vocabulary} $Voc(\varphi)$ of $\varphi$ inductively:
   175 \begin{itemize}
   176 \item $Voc(p) = \{p\}$ for $p \in P$
   177 \item $Voc(\neg \varphi) = Voc(\varphi)$
   178 \item $Voc(\varphi \lor \psi) = Voc(\varphi) \cup Voc(\psi)$
   179 \item $Voc(X \varphi) = Voc(\varphi)$
   180 \item $Voc(\varphi U \psi) = Voc(\varphi) \cup Voc(\psi)$
   181 \end{itemize}
   182 Let $M$ be a model and $\varphi$ a LTL-formula, we define model $M_{Voc(\varphi)}$:
   183 \[\forall{i \in \mathbb{N}}: M_{Voc(\varphi)} = M(i) \cap Voc(\varphi)\]
   184 \end{def:vocabulary}
   185 
   186 \begin{prop:vocabulary sat}
   187 Let $M$ be a model and $\varphi$ a LTL-formula, then following holds:
   188 \[\forall{i \in \mathbb{N}}: M,i \models \varphi \iff M_{Voc(\varphi)},i \models \varphi\] 
   189 \end{prop:vocabulary sat}
   190 
   191 \section{Model checking}
   192 \begin{thebibliography}{99}
   193 \bibitem{ref:ltl&büchi} 
   194 \uppercase{M{\footnotesize adhavan} M{\footnotesize ukund}.}
   195 {\em Linear-Time Temporal Logic and B\"uchi Automata}.
   196 Winter School on Logic and Computer Science, Indian Statistical Institute, Calcutta, 1997.
   197 
   198 \bibitem{ref:handbook} 
   199 \uppercase{P{\footnotesize atrick} B{\footnotesize lackburn}, 
   200 F{\footnotesize rank} W{\footnotesize olter and} J{\footnotesize ohan van} B{\footnotesize enthem}.}
   201 {\em Handbook of Modal Logic (Studies in Logic and Practical Reasoning)}.
   202 3rd Edition, Elsevier, Amsterdam, 2007.
   203 
   204 \bibitem{ref:infpaths}
   205 \uppercase{P{\footnotesize ierre} W{\footnotesize olper}, 
   206 M{\footnotesize oshe} Y. V{\footnotesize ardi and}
   207 A. P{\footnotesize rasad} S{\footnotesize istla}.}
   208 {\em Reasoning about Infinite Computation Paths}.
   209 In Proceedings of the 24th IEEE FOCS, 1983.
   210 
   211 \end{thebibliography}
   212 \end{document}