slides/src/slides.tex
author Eugen Sawin <sawine@me73.com>
Fri, 22 Jul 2011 23:01:19 +0200
changeset 72 722ec2a3cabe
parent 71 e7c58603ff08
child 73 271b2a5270c1
permissions -rw-r--r--
Almost finished.
     1 \documentclass[9pt]{beamer}
     2 \usetheme{Boadilla}
     3 \usecolortheme{dove}
     4 \usecolortheme{orchid}
     5 \usecolortheme{dolphin}
     6 %\usecolortheme{seagull}
     7 
     8 \usepackage{amsmath, amsthm, amssymb, amsfonts, verbatim}
     9 \usepackage{pifont}
    10 \usepackage{multicol}
    11 \usepackage{xcolor}
    12 \usepackage{ulem}
    13 \usepackage{graphics}
    14 \usepackage{tikz}
    15 \usetikzlibrary{automata}
    16 \usepackage{subfigure}
    17 
    18 \renewcommand{\emph}{\textit}
    19 \renewcommand{\em}{\it}
    20 
    21 \newcommand{\cross}{\ding{55}}
    22 \newcommand{\M}{\mathcal{M}}
    23 \newcommand{\N}{\mathbb{N}_0}
    24 \newcommand{\F}{\mathcal{F}}
    25 \newcommand{\Fs}{\mathbb{F}}
    26 \newcommand{\Prop}{\mathcal{P}}
    27 \newcommand{\A}{\mathcal{A}}
    28 \newcommand{\X}{\mathcal{X}}
    29 \newcommand{\U}{\mathcal{U}}
    30 \newcommand{\V}{\mathcal{V}}
    31 \newcommand{\dnf}{\mathsf{dnf}}
    32 \newcommand{\consq}{\mathsf{consq}}
    33 
    34 \theoremstyle{definition} %plain, definition, remark, proof, corollary
    35 \newtheorem*{def:finite words}{Finite words}
    36 \newtheorem*{def:infinite words}{Infinite words}
    37 \newtheorem*{def:regular languages}{Regular languages}
    38 \newtheorem*{def:regular languages closure}{Regular closure}
    39 \newtheorem*{def:omega regular languages}{$\omega$-regular languages}
    40 \newtheorem*{def:omega regular languages closure}{$\omega$-regular closure}
    41 \newtheorem*{def:buechi automata}{Automaton}
    42 \newtheorem*{def:automata runs}{Run}
    43 \newtheorem*{def:inf}{Infinite occurrences}
    44 \newtheorem*{def:automata acceptance}{Acceptance}
    45 \newtheorem*{def:automata language}{Recognised language}
    46 \newtheorem*{def:general automata}{Generalised automaton}
    47 \newtheorem*{def:general acceptance}{Acceptance}
    48 \newtheorem*{def:syntax}{Syntax}
    49 \newtheorem*{def:program}{Program}
    50 \newtheorem*{def:program automaton}{System automaton}
    51 
    52 \newtheorem*{def:vocabulary}{Vocabulary}
    53 \newtheorem*{def:frames}{Frame}
    54 \newtheorem*{def:models}{Model}
    55 \newtheorem*{def:satisfiability}{Satisfiability}
    56 \newtheorem*{def:fs closure}{Closure}
    57 \newtheorem*{def:atoms}{Atoms}
    58 \newtheorem*{def:rep function}{Representation function}
    59 \newtheorem*{def:next}{Next function}
    60 \newtheorem*{def:dnf}{Disjunctive normal form}
    61 \newtheorem*{def:positive formulae}{Positive formulae}
    62 \newtheorem*{def:consq}{Logical consequences}
    63 \newtheorem*{def:partial automata}{Partial automata}
    64 
    65 \theoremstyle{plain}
    66 \newtheorem{prop:vocabulary sat}{Proposition}[section]
    67 \newtheorem{prop:general equiv}{Proposition}[section]
    68 \newtheorem{prop:computation set=language}{Proposition}[section]
    69 
    70 \theoremstyle{plain}
    71 \newtheorem{thm:model language}{Theorem}[section]
    72 \newtheorem{cor:mod=model language}{Corollary}[thm:model language]
    73 \newtheorem{cor:mod=program language}[cor:mod=model language]{Corollary}
    74 \newtheorem{thm:model checking}{Theorem}[section]
    75 \newtheorem{lem:dnf}{Lemma}[section]
    76 \newtheorem{lem:consq}[lem:dnf]{Lemma}
    77 
    78 \title[Algorithmic Verification]{Algorithmic Verification of Reactive Systems}
    79 \author{Eugen Sawin}
    80 \institute[University of Freiburg]
    81 { 
    82   Research Group for Foundations in Artificial Intelligence\\
    83   Computer Science Department\\
    84   University of Freiburg
    85 }
    86 \date[SS 2011]{Seminar: Automata Constructions in Model Checking}
    87 \subject{Model Checking}
    88 
    89 \begin{document}
    90 \frame{\titlepage}
    91 
    92 \begin{frame}
    93 \frametitle{Motivation}
    94 \framesubtitle{Model Checking 1/2}
    95 \begin{center}
    96 %\only<1>{\colorbox{black}{\makebox(35,10){\color{white} $\M \models \varphi$}}}
    97 \[\M \models \varphi\]
    98 \end{center}
    99 \end{frame}
   100 
   101 \begin{frame}
   102 \frametitle{Motivation}
   103 \framesubtitle{Model Checking 2/2}
   104 \begin{center}
   105 Given a program $P$ and specification $\varphi$:\\
   106 \colorbox{black}{\makebox(150,10){\color{white} does every run of $P$ satisfy $\varphi$?}}
   107 \end{center}
   108 \end{frame}
   109 
   110 \begin{frame}
   111 \frametitle{Motivation}
   112 \framesubtitle{Industry}
   113 \begin{figure}
   114 \centering
   115 \subfigure{\includegraphics[width=70pt,height=50pt]{images/intel.jpg}}
   116 \subfigure{\includegraphics[width=70pt,height=50pt]{images/airbag.jpg}}
   117 \subfigure{\includegraphics[width=70pt,height=50pt]{images/atc.jpg}}
   118 \end{figure}
   119 \end{frame}
   120 
   121 {
   122 \setbeamercolor{normal text}{bg=black, fg=white}
   123 \setbeamercolor{frametitle}{fg=white!30!black}
   124 \usebeamercolor*{normal text} 
   125 \usebeamercolor*{frametitle} 
   126 \begin{frame}
   127 \frametitle{Linear Temporal Logic}
   128 \framesubtitle{Natural language 1/2}
   129 \begin{center}
   130 ``It is dark.''\\
   131 \visible<2->{``It is \emph{always} dark.''\\}
   132 \visible<3->{``It is \emph{currently} dark.''\\}
   133 \visible<4->{``It will \emph{necessarily} be dark.''\\}
   134 \visible<5->{``It is dark \emph{until} someone puts the light on.''}
   135 \end{center}
   136 \end{frame}
   137 }
   138 
   139 \begin{frame}
   140 \frametitle{Linear Temporal Logic}
   141 \framesubtitle{Natural language 2/2}
   142 \begin{center}
   143 \only<1->{
   144 \color{white}
   145 \colorbox{black}{\makebox(50,10){It is dark}} \colorbox{orange}{\makebox(30,10){until}} \colorbox{black!30}{\makebox(50,10){there is light}}\\
   146 \visible<2->{
   147 \colorbox{black}{\makebox(50,10){$p_0$}} \colorbox{orange}{\makebox(30,10){$\U$}} \colorbox{black!30}{\makebox(50,10){$p_1$}}}
   148 }
   149 \end{center}
   150 \end{frame}
   151 
   152 \begin{frame}
   153 \frametitle{Linear Temporal Logic}
   154 \framesubtitle{Syntax}
   155 \begin{def:syntax}
   156 Let $\Prop$ be the countable set of \emph{atomic propositions}, LTL-formulae $\varphi$ are defined using following productions:
   157 \[\varphi ::= p \in \Prop \,|\, \neg \varphi \,|\, \varphi \lor \varphi \,|\, \X \varphi \,|\, \varphi \U \varphi\]
   158 \begin{itemize}
   159 \item $\neg, \lor$ corresponds to the Boolean \emph{negation} and \emph{disjunction}.
   160 \item $\X$ reads \emph{next}.
   161 \item $\U$ reads \emph{until}.
   162 \end{itemize}
   163 \end{def:syntax}
   164 \end{frame}
   165 
   166 \begin{frame}
   167 \frametitle{Linear Temporal Logic}
   168 \framesubtitle{Semantics}
   169 \begin{def:frames}
   170 An LTL-\emph{frame} is a tuple $\F = (S, R)$:
   171 \begin{itemize}
   172 \item $S = \{s_i \mid i \in \N\}$ is the set of states.
   173 \item $R = \{(s_i, s_{i+1}) \mid i \in \N\}$ is the accessibility relation.
   174 \end{itemize} 
   175 \end{def:frames}
   176 
   177 \begin{def:models}
   178 An LTL-\emph{model} is a tuple $\M = (\F, V)$:
   179 \begin{itemize}
   180 \item $\F$ is a \emph{frame}.
   181 \item $V: S \to 2^\Prop$ is a \emph{valuation function}.
   182 \item Intuitively we say $p \in \Prop$ is \emph{true} at time instant $i$ iff $p \in V(i)$. 
   183 \end{itemize}
   184 \end{def:models}
   185 \end{frame}
   186 
   187 \begin{frame}
   188 \frametitle{Linear Temporal Logic}
   189 \framesubtitle{Model Example}
   190 \begin{figure}
   191 \centering
   192 \begin{tikzpicture}[shorten >=1pt, node distance=2.5cm, auto, semithick, >=stealth   
   193     ,accepting/.style={fill, gray!50!black, text=white}]
   194 \node[state, initial, initial text=] (s_0) {$\{p_0\}$};
   195 \path (s_0) [late options={label=below:$s_0$}];
   196 \node[state] (s_1) [right of= s_0] {$\{p_0, p_2\}$};
   197 \path (s_1) [late options={label=below:$s_1$}];
   198 \node[state] (s_2) [right of= s_1] {$\{p_1\}$};
   199 \path (s_2) [late options={label=below:$s_2$}];
   200 \node[state] (s_i) [right of= s_2] {$\{p_1\}$};
   201 \path (s_i) [late options={label=below:$s_i$}];
   202 \path[->] 
   203 (s_0) edge node {$R$} (s_1) 
   204 (s_1) edge node {$R$} (s_2);
   205 \path[dashed,->] 
   206 (s_2) edge node {$R$} (s_i); 
   207 \end{tikzpicture}
   208 \end{figure}
   209 \end{frame}
   210 
   211 \begin{frame}
   212 \frametitle{Linear Temporal Logic}
   213 \framesubtitle{Satisfiability}
   214 \begin{def:satisfiability}
   215 A model $\M = (\F, V)$ \emph{satisfies} a formula $\varphi$ at time instant $i$ is denoted by $\M,i \models \varphi$:
   216 \begin{itemize}
   217 \item $\M,i \models p$ for $p \in \Prop \iff p \in V(i)$
   218 \item $\M,i \models \neg \varphi \iff$ not $\M,i \models \varphi$
   219 \item $\M,i \models \varphi \lor \psi \iff \M,i \models \varphi$ or $\M,i \models \psi$
   220 \item $\M,i \models \X \varphi \iff \M,i+1 \models \varphi$
   221 \item $\M,i \models \varphi \U \psi \iff \exists{k \geq i}: \M,k \models \psi$ and $\forall{i \leq j < k}: \M,j \models\varphi$
   222 \end{itemize}
   223 \end{def:satisfiability}
   224 \end{frame}
   225 
   226 \begin{frame}
   227 \frametitle{Reactive Systems}
   228 \framesubtitle{Infinite inputs}
   229 \begin{center}
   230 \begin{figure}
   231 \setcounter{subfigure}{0} 
   232 \subfigure[Terminating program]{
   233 \begin{tikzpicture}[shorten >=1pt, node distance=1.5cm, semithick, >=stealth   
   234     ,accepting/.style={fill, gray!50!black, text=white}]
   235 \node[state, initial, initial text=$input$] (p) {$P$};
   236 \coordinate (b) at (1,0);
   237         %\coordinate (b) at ($(a)+1/2*(3,3)$);
   238 \draw (p) edge[->] node[right] {$\hspace{8pt}output$} (b);
   239 %\draw[->] (p) -- (b);
   240 \end{tikzpicture}
   241 }
   242 \hspace{10pt}
   243 \visible<2>{\subfigure[Reactive program]{
   244 \begin{tikzpicture}[shorten >=1pt, node distance=1.5cm, semithick, >=stealth   
   245     ,accepting/.style={fill, gray!50!black, text=white}]
   246 \node[state, initial, initial text=$event$] (p) {$RP$};
   247 \coordinate (b) at (1.1,0);
   248         %\coordinate (b) at ($(a)+1/2*(3,3)$);
   249 \path[->]
   250 (p) edge [loop right] node {$action$} ();
   251 \end{tikzpicture}
   252 }}
   253 \end{figure}
   254 \end{center}
   255 \end{frame}
   256 
   257 \begin{frame}
   258 \frametitle{Automata}
   259 \framesubtitle{Example 1/2}
   260 \begin{figure}
   261 \centering
   262 \only<-3>{
   263 \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   264     %every state/.style={fill, draw=none, gray, text=white},
   265     ,accepting/.style={fill, gray!50!black, text=white}
   266     %initial/.style ={gray, text=white}]%,  thick]
   267     ]
   268 \node[state,initial, initial text=] (q_0) {$q_0$};
   269 \node[state] (q_1) [above right of= q_0] {$q_1$};
   270 \node[state,accepting](q_2) [below right of= q_1] {$q_2$};
   271 \path[->] 
   272 (q_0) edge node {$a$} (q_1)
   273   edge [loop above] node {$b$} ()
   274 (q_1) edge node {$b$} (q_2)
   275   edge [loop above] node {$a$} ()
   276 (q_2) %edge node {$a$} (q_1)
   277   edge node {$b$} (q_0);
   278 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);
   279 \end{tikzpicture}\\
   280 \vspace{10pt}
   281 \visible<2-3>{$w_1 = \overline{bbaa} \implies \rho_1 = q_0q_0\overline{q_0q_1q_1q_2}$}\\
   282 \visible<3>{$w_2 = bb\overline{ab} \implies \rho_2 = q_0q_0\overline{q_1q_2}$}\\
   283 \vspace{10pt}
   284 \visible<4>{Accepts all inputs with infinite occurrences of $ab$.}
   285 }
   286 
   287 \only<4>{
   288 \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   289     %every state/.style={fill, draw=none, gray, text=white},
   290     ,accepting/.style={fill, gray!50!black, text=white}
   291     %initial/.style ={gray, text=white}]%,  thick]
   292     ]
   293 \node[state,initial, initial text=] (q_0) {$q_0$};
   294 \node[state] (q_1) [above right of= q_0] {$q_1$};
   295 \node[state,accepting](q_2) [below right of= q_1] {$q_2$};
   296 \path[->] 
   297 (q_0) 
   298   edge [loop above] node {$b$} ()
   299 (q_1) 
   300   edge [loop above] node {$a$} ()
   301 (q_2) %edge node {$a$} (q_1)
   302   edge node {$b$} (q_0);
   303 \color{green}
   304 \path[->] 
   305 (q_0) edge node {$a$} (q_1) 
   306 (q_1) edge node {$b$} (q_2);
   307 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);
   308 \end{tikzpicture}\\
   309 \color{black}
   310 \vspace{10pt}
   311 \visible<2->{$w_1 = \overline{\textcolor{green}{b}ba\textcolor{green}{a}} \implies \rho_1 = q_0q_0\overline{q_0q_1q_1\textcolor{green}{q_2}}$}\\
   312 \visible<3->{$w_2 = bb\overline{\textcolor{green}{ab}} \implies \rho_2 = q_0q_0\overline{q_1\textcolor{green}{q_2}}$}\\
   313 \vspace{10pt}
   314 \visible<4>{Accepts all inputs with infinite occurrences of $ab$.}
   315 }
   316 %Automaton $\A_1$
   317 \end{figure}
   318 \end{frame}
   319 
   320 \begin{frame}
   321 \frametitle{Automata}
   322 \framesubtitle{Example 2/2 (Complement)}
   323 \begin{figure}
   324 \centering
   325 \only<1>{
   326   \subfigure
   327             {
   328               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   329                   %every state/.style={fill, draw=none, gray, text=white},
   330                   ,accepting/.style={fill, gray!50!black, text=white}
   331                   %initial/.style ={gray, text=white}]%,  thick]
   332                 ]
   333                 \node[state,initial, initial text=, accepting] (q_0) {$q_0$};
   334                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   335                 \node[state](q_2) [below right of= q_1] {$q_2$};
   336                 \path[->] 
   337                 (q_0) edge node {$a$} (q_1)
   338                 edge [loop above] node {$b$} ()
   339                 (q_1) edge node {$b$} (q_2)
   340                 edge [loop above] node {$a$} ()
   341                 (q_2) %edge node {$a$} (q_1)
   342                 edge node {$b$} (q_0);
   343                 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);
   344               \end{tikzpicture}
   345             }
   346 }
   347 \only<2>{ 
   348   \subfigure
   349             {
   350               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   351                   %every state/.style={fill, draw=none, gray, text=white},
   352                   ,accepting/.style={fill, gray!50!black, text=white}
   353                   %initial/.style ={gray, text=white}]%,  thick]
   354                 ]
   355                 \node[state,initial, initial text=, accepting] (q_0) {$q_0$};
   356                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   357                 \node[state](q_2) [below right of= q_1] {$q_2$};
   358                 \path[->] 
   359                 (q_0) 
   360                 edge [loop above] node {$b$} ()
   361                 (q_1) 
   362                 edge [loop above] node {$a$} ();                
   363                 \color{red}  
   364                 \path[->] 
   365                 (q_0) edge node {$a$} (q_1)
   366                 (q_1) edge node {$b$} (q_2)
   367                 (q_2) edge node {$b$} (q_0);  
   368                 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);              
   369               \end{tikzpicture}  \color{red}  
   370             }
   371  \color{black}
   372 }
   373 \only<3->{ \setcounter{subfigure}{0} 
   374   \subfigure[Complement automaton \cross]
   375             {
   376               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   377                   %every state/.style={fill, draw=none, gray, text=white},
   378                   ,accepting/.style={fill, gray!50!black, text=white}
   379                   %initial/.style ={gray, text=white}]%,  thick]
   380                 ]
   381                 \node[state,initial, initial text=, accepting] (q_0) {$q_0$};
   382                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   383                 \node[state](q_2) [below right of= q_1] {$q_2$};
   384                 \path[->] 
   385                 (q_0) 
   386                 edge [loop above] node {$b$} ()
   387                 (q_1) 
   388                 edge [loop above] node {$a$} ();                
   389                 \path[->] 
   390                 (q_0) edge node {$a$} (q_1)
   391                 (q_1) edge node {$b$} (q_2)
   392                 (q_2) edge node {$b$} (q_0);  
   393                 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);              
   394               \end{tikzpicture}  \color{red}  
   395             }
   396  \color{black}
   397 }
   398 %\hspace{10pt}
   399 \visible<3->{
   400   \subfigure[Complement automaton \checkmark]
   401             {
   402               \label{fig:complement automaton}
   403               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth   
   404                   ,accepting/.style={fill, gray!50!black, text=white}]
   405                 \node[state, initial, initial text=] (q_0) {$q_0$};
   406                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   407                 \node[state, accepting](q_2) [below right of= q_1] {$q_2$};
   408                 \path[->] 
   409                 (q_0) edge node {$a$} (q_1)
   410                 edge node {$b$} (q_2)
   411                 edge [loop above] node {$a, b$} ()
   412                 (q_1) edge [loop above] node {$a$} ()
   413                 (q_2) 
   414                 edge [loop above] node {$b$} ();
   415               \end{tikzpicture}\color{green}  
   416             }\\
   417 \color{black}  
   418 \vspace{20pt}
   419 Accepts all inputs with finite many $ab$.
   420 }
   421 %\caption{Automata from Example \ref{ex:automaton}}
   422 \end{figure}
   423 \end{frame}
   424 \color{black}  
   425 
   426 \begin{frame}
   427 \frametitle{Automata}
   428 \framesubtitle{Definition}
   429 \begin{def:buechi automata}
   430 A non-deterministic B\"uchi automaton is a tuple $\A = (\Sigma, S, S_0, \Delta, F)$ with:
   431 \begin{itemize}
   432 \item $\Sigma$ is a finite \emph{alphabet}.
   433 \item $S$ is a finite set of \emph{states}.
   434 \item $S_0 \subseteq S$ is the set of \emph{initial states}.
   435 \item $\Delta: S \times \Sigma \times S$ is a \emph{transition relation}.
   436 \item $F \subseteq S$ is the set of \emph{accepting states}.
   437 \end{itemize}
   438 \end{def:buechi automata}
   439 \end{frame}
   440 
   441 \begin{frame}
   442 \frametitle{Automata}
   443 \framesubtitle{Runs}
   444 \begin{def:automata runs}
   445 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton:
   446 \begin{itemize}
   447 \item A run $\rho$ of $\A$ on an infinite word $w = a_0,a_1,...$ is a sequence $\rho = s_0,s_1,...$:
   448 \begin{itemize}
   449 \item $s_0 \in S_0$.
   450 \item $(s_i, a_i, s_{i+1}) \in \Delta$, for all $i \geq 0$.
   451 \end{itemize}
   452 \item Alternative view of a run $\rho$ as a function $\rho : \N \to S$, with $\rho(i) = s_i$.
   453 \end{itemize}
   454 \end{def:automata runs}
   455 \visible<2->{\[w_1 = \overline{\textcolor{green}{b}ba\textcolor{green}{a}} \implies \rho_1 = q_0q_0\overline{q_0q_1q_1\textcolor{green}{q_2}}\]
   456 \[w_2 = bb\overline{\textcolor{green}{ab}} \implies \rho_2 = q_0q_0\overline{q_1\textcolor{green}{q_2}}\]}
   457 \end{frame}
   458 
   459 \begin{frame}
   460 \frametitle{Automata}
   461 \framesubtitle{Acceptance}
   462 \begin{def:inf}
   463 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $\A$:
   464 \begin{itemize}
   465 \item $\exists^\omega$ denotes the existential quantifier for \emph{infinitely} many occurrences.
   466 \item $inf(\rho) = \{s \in S \mid \exists^\omega{n \in \N}: \rho(n) = s\}$.
   467 \end{itemize}
   468 \end{def:inf}
   469 
   470 \begin{def:automata acceptance}
   471 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $\A$:
   472 \begin{itemize}
   473 \item $\rho$ is \emph{accepting} iff $inf(\rho) \cap F \neq \emptyset$.
   474 \item $\A$ \emph{accepts} an input word $w$ iff there exists a run $\rho$ of $\A$ on $w$, such that $\rho$ is accepting. 
   475 \end{itemize}
   476 \end{def:automata acceptance}
   477 \end{frame}
   478 
   479 \begin{frame}
   480 \frametitle{Automata}
   481 \framesubtitle{Language}
   482 \begin{def:automata language}
   483 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton:
   484 \begin{itemize}
   485 \item $L_\omega(\A) = \{w \in \Sigma^\omega \mid \A \text{ accepts } w\}$, we say $\A$ recognises language $L_\omega(\A)$.
   486 \item Language $L$ is \emph{B\"uchi-recognisable} iff there is an automaton $\A$ with $L = L_\omega(\A)$.
   487 \end{itemize}
   488 \end{def:automata language}
   489 \end{frame}
   490 
   491 \begin{frame}
   492 \frametitle{Generalised Automata}
   493 \begin{def:general automata}
   494 A \emph{generalised B\"uchi automaton} is a tuple $\A_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i<k})$:
   495 \begin{itemize}
   496 \item $\{F_i\}$ is a finite set of sets for a given $k$.
   497 \item Each $F_i \subseteq S$ is a finite set of accepting states.
   498 \end{itemize}
   499 \end{def:general automata}
   500 
   501 \begin{def:general acceptance}
   502 Let $\A_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i<k})$ be a generalised automaton and let $\rho$ be a run of $\A_G$:
   503 \begin{itemize}
   504 \item $\rho$ is \emph{accepting} iff $\forall{i < k}: inf(\rho) \cap F_i \neq \emptyset$.
   505 \item $\A_G$ \emph{accepts} an input word $w$ iff there exists a run $\rho$ of $\A_G$ on $w$, such that $\rho$ is accepting. 
   506 \end{itemize} 
   507 \end{def:general acceptance}
   508 
   509 \begin{prop:general equiv}
   510 Let $\A_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i < k})$ be a generalised automaton and let $\A_i = (\Sigma, S, S_0, \Delta, F_i)$ be non-deterministic automata:
   511 \[L_\omega(\A_G) = \bigcap_{i < k} L_\omega(\A_i)\]
   512 \end{prop:general equiv}
   513 \end{frame}
   514 
   515 \begin{frame}
   516 \frametitle{Automata Construction}
   517 \framesubtitle{Formula automata}
   518 \begin{center}
   519 Model $\M_\varphi$ for formula $\varphi$\\
   520 $\Downarrow$\\
   521 Closure $CL(\varphi)$ of $\varphi$\\
   522 $\Downarrow$\\
   523 Automaton $\A_\varphi$ for $\varphi$\\
   524 \vspace{20pt}
   525 \visible<2>{\textcolor{red}{On-the-fly methods} \`a la Gerth et al.}
   526 \end{center}
   527 \end{frame}
   528 
   529 \begin{frame}
   530 \frametitle{Automata Construction}
   531 \framesubtitle{System automata 1/2}
   532 \begin{def:program}
   533 Given a program $P = (S_P, s_0, R, V)$:
   534 \begin{itemize}
   535 \begin{multicols}{2}
   536 \item $S$ is the set of possible states.
   537 \item $s_0$ is the initial state.
   538 \item $R : S \times \Prop \times S$ is the transition relation.
   539 \item $V : S \to 2^\Prop$ is a valuation function.
   540 \end{multicols}
   541 \end{itemize}
   542 A \emph{computation} of $P$ is a run $\rho = (V(s_0), V(s_1), ...)$. 
   543 \end{def:program}
   544 
   545 \begin{def:program automaton}
   546 We construct automaton $\A_P = (\Sigma, S, S_0, \Delta, F)$ for program $P$:
   547 \begin{itemize}
   548 \begin{multicols}{2}
   549 \item $\Sigma = 2^\Prop$
   550 \item $S = S_P$
   551 \item $S_0 = \{s_0\}$
   552 \item $F = S$
   553 \end{multicols}
   554 \vspace{-1.1em}
   555 \item $\Delta = \{(s, V(s), s') \mid \exists{a \in \Prop}: (s, a, s') \in R\}$
   556 \end{itemize}
   557 \end{def:program automaton}
   558 \end{frame}
   559 
   560 \begin{frame}
   561 \frametitle{Automata Construction}
   562 \framesubtitle{System automata 2/2}
   563 \begin{prop:computation set=language}
   564 Let $\A_P = (\Sigma, S, S_0, \Delta, F)$, note that $F = S$, it follows:
   565 \[L_\omega(\A_P) = \{\rho \mid \rho \text{ is a run of } \A_P\}\]
   566 \end{prop:computation set=language}
   567 \end{frame}
   568 
   569 \begin{frame}
   570 \frametitle{Verification}
   571 \begin{center}
   572 Given a program $P$ and specification $\varphi$:\\
   573 \colorbox{black}{\makebox(150,10){\color{white}
   574 \only<1>{does every run of $P$ satisfy $\varphi$?}
   575 \only<2>{$L_\omega(\A_P) \subseteq L_\omega(\A_\varphi)$}
   576 \only<3>{$L_\omega(\A_P) \cap L_\omega(\A_{\neg \varphi}) = \emptyset$}}}
   577 \end{center}
   578 \end{frame}
   579 
   580 \begin{frame}[allowframebreaks]
   581 \frametitle<presentation>{Literature}    
   582 \begin{thebibliography}{10}    
   583 
   584 %\beamertemplatearticlebibitems
   585 \bibitem{ref:ltl&büchi}
   586 Madhavan Mukund.
   587 \newblock {\em Linear-Time Temporal Logic and B\"uchi Automata}.
   588 \newblock Winter School on Logic and Computer Science, Indian Statistical Institute, Calcutta, 1997.
   589   
   590 %\beamertemplatearticlebibitems
   591 \bibitem{ref:alternating verification}
   592 Moshe Y. Vardi.
   593 \newblock {\em Alternating Automata and Program Verification}.
   594 \newblock Computer Science Today, Volume 1000 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1995.
   595 
   596 \bibitem{ref:on-the-fly verification} 
   597 Rob Gerth, Doron Peled, Moshe Y. Vardi and Pierre Wolper.
   598 \newblock {\em Simple On-the-fly Automatic Verification of Linear Temporal Logic}.
   599 \newblock Proceeding IFIO/WG6.1 Symposium on Protocol Specification, Testing and Verification, Warsaw, 1995.
   600 
   601 \beamertemplatebookbibitems
   602 \bibitem{ref:handbook}
   603 Patrick Blackburn, Frank Wolter and Johan van Benthem.
   604 \newblock {\em Handbook of Modal Logic}.
   605 \newblock 3rd Edition, Elsevier, Amsterdam, Chapter 11 P. 655-720 and Chapter 17 P. 975-989, 2007.
   606 
   607 \beamertemplatearticlebibitems
   608 \bibitem{ref:automated verification} 
   609 Moshe Y. Vardi.
   610 \newblock {\em Automated Verification: Graphs, Logic and Automata}.
   611 \newblock Proceeding of the International Joint Conference on Artificial Intelligence, Acapulco, 2003.
   612 
   613 \end{thebibliography}
   614 \end{frame}
   615 
   616 \end{document}