slides/src/slides.tex
author Eugen Sawin <sawine@me73.com>
Fri, 22 Jul 2011 16:50:42 +0200
changeset 70 ab0b7643228a
parent 69 3ebfd8683b18
child 71 e7c58603ff08
permissions -rw-r--r--
Reactive systems.
     1 \documentclass[9pt]{beamer}
     2 \usetheme{Boadilla}
     3 \usecolortheme{dove}
     4 \usecolortheme{orchid}
     5 \usecolortheme{dolphin}
     6 %\usecolortheme{seagull}
     7 
     8 \usepackage{amsmath, amsthm, amssymb, amsfonts, verbatim}
     9 \usepackage{pifont}
    10 \usepackage{xcolor}
    11 \usepackage{ulem}
    12 \usepackage{graphics}
    13 \usepackage{tikz}
    14 \usetikzlibrary{automata}
    15 \usepackage{subfigure}
    16 
    17 \renewcommand{\emph}{\textit}
    18 \renewcommand{\em}{\it}
    19 
    20 \newcommand{\cross}{\ding{55}}
    21 \newcommand{\M}{\mathcal{M}}
    22 \newcommand{\N}{\mathbb{N}_0}
    23 \newcommand{\F}{\mathcal{F}}
    24 \newcommand{\Fs}{\mathbb{F}}
    25 \newcommand{\Prop}{\mathcal{P}}
    26 \newcommand{\A}{\mathcal{A}}
    27 \newcommand{\X}{\mathcal{X}}
    28 \newcommand{\U}{\mathcal{U}}
    29 \newcommand{\V}{\mathcal{V}}
    30 \newcommand{\dnf}{\mathsf{dnf}}
    31 \newcommand{\consq}{\mathsf{consq}}
    32 
    33 \theoremstyle{definition} %plain, definition, remark, proof, corollary
    34 \newtheorem*{def:finite words}{Finite words}
    35 \newtheorem*{def:infinite words}{Infinite words}
    36 \newtheorem*{def:regular languages}{Regular languages}
    37 \newtheorem*{def:regular languages closure}{Regular closure}
    38 \newtheorem*{def:omega regular languages}{$\omega$-regular languages}
    39 \newtheorem*{def:omega regular languages closure}{$\omega$-regular closure}
    40 \newtheorem*{def:buechi automata}{Automaton}
    41 \newtheorem*{def:automata runs}{Run}
    42 \newtheorem*{def:inf}{Infinite occurrences}
    43 \newtheorem*{def:automata acceptance}{Acceptance}
    44 \newtheorem*{def:automata language}{Recognised language}
    45 \newtheorem*{def:general automata}{Generalised automaton}
    46 \newtheorem*{def:general acceptance}{Acceptance}
    47 \newtheorem*{def:syntax}{Syntax}
    48 
    49 
    50 \newtheorem*{def:vocabulary}{Vocabulary}
    51 \newtheorem*{def:frames}{Frame}
    52 \newtheorem*{def:models}{Model}
    53 \newtheorem*{def:satisfiability}{Satisfiability}
    54 \newtheorem*{def:fs closure}{Closure}
    55 \newtheorem*{def:atoms}{Atoms}
    56 \newtheorem*{def:rep function}{Representation function}
    57 \newtheorem*{def:next}{Next function}
    58 \newtheorem*{def:dnf}{Disjunctive normal form}
    59 \newtheorem*{def:positive formulae}{Positive formulae}
    60 \newtheorem*{def:consq}{Logical consequences}
    61 \newtheorem*{def:partial automata}{Partial automata}
    62 
    63 \theoremstyle{plain}
    64 \newtheorem{prop:vocabulary sat}{Proposition}[section]
    65 \newtheorem{prop:general equiv}{Proposition}[section]
    66 \newtheorem{prop:computation set=language}{Proposition}[section]
    67 
    68 \theoremstyle{plain}
    69 \newtheorem{thm:model language}{Theorem}[section]
    70 \newtheorem{cor:mod=model language}{Corollary}[thm:model language]
    71 \newtheorem{cor:mod=program language}[cor:mod=model language]{Corollary}
    72 \newtheorem{thm:model checking}{Theorem}[section]
    73 \newtheorem{lem:dnf}{Lemma}[section]
    74 \newtheorem{lem:consq}[lem:dnf]{Lemma}
    75 
    76 \title[Algorithmic Verification]{Algorithmic Verification of Reactive Systems}
    77 \author{Eugen Sawin}
    78 \institute[University of Freiburg]
    79 { 
    80   Research Group for Foundations in Artificial Intelligence\\
    81   Computer Science Department\\
    82   University of Freiburg
    83 }
    84 \date[SS 2011]{Seminar: Automata Constructions in Model Checking}
    85 \subject{Model Checking}
    86 
    87 \begin{document}
    88 \frame{\titlepage}
    89 
    90 \begin{frame}
    91 \frametitle{Motivation}
    92 \framesubtitle{Model Checking 1/2}
    93 \begin{center}
    94 %\only<1>{\colorbox{black}{\makebox(35,10){\color{white} $\M \models \varphi$}}}
    95 \[\M \models \varphi\]
    96 \end{center}
    97 \end{frame}
    98 
    99 \begin{frame}
   100 \frametitle{Motivation}
   101 \framesubtitle{Model Checking 2/2}
   102 \begin{center}
   103 Given a program $P$ and specification $\varphi$:\\
   104 \colorbox{black}{\makebox(150,10){\color{white} does every run of $P$ satisfy $\varphi$?}}
   105 \end{center}
   106 \end{frame}
   107 
   108 \begin{frame}
   109 \frametitle{Motivation}
   110 \framesubtitle{Industry}
   111 \begin{figure}
   112 \centering
   113 \subfigure{\includegraphics[width=70pt,height=50pt]{images/intel.jpg}}
   114 \subfigure{\includegraphics[width=70pt,height=50pt]{images/airbag.jpg}}
   115 \subfigure{\includegraphics[width=70pt,height=50pt]{images/atc.jpg}}
   116 \end{figure}
   117 \end{frame}
   118 
   119 {
   120 \setbeamercolor{normal text}{bg=black, fg=white}
   121 \setbeamercolor{frametitle}{fg=white!30!black}
   122 \usebeamercolor*{normal text} 
   123 \usebeamercolor*{frametitle} 
   124 \begin{frame}
   125 \frametitle{Linear Temporal Logic}
   126 \framesubtitle{Natural language 1/2}
   127 \begin{center}
   128 ``It is dark.''\\
   129 \visible<2->{``It is \emph{always} dark.''\\}
   130 \visible<3->{``It is \emph{currently} dark.''\\}
   131 \visible<4->{``It will \emph{necessarily} be dark.''\\}
   132 \visible<5->{``It is dark \emph{until} someone puts the light on.''}
   133 \end{center}
   134 \end{frame}
   135 }
   136 
   137 \begin{frame}
   138 \frametitle{Linear Temporal Logic}
   139 \framesubtitle{Natural language 2/2}
   140 \begin{center}
   141 \only<1->{
   142 \color{white}
   143 \colorbox{black}{\makebox(50,10){It is dark}} \colorbox{orange}{\makebox(30,10){until}} \colorbox{black!30}{\makebox(50,10){there is light}}\\
   144 \visible<2->{
   145 \colorbox{black}{\makebox(50,10){$p_0$}} \colorbox{orange}{\makebox(30,10){$\U$}} \colorbox{black!30}{\makebox(50,10){$p_1$}}}
   146 }
   147 \end{center}
   148 \end{frame}
   149 
   150 \begin{frame}
   151 \frametitle{Linear Temporal Logic}
   152 \framesubtitle{Syntax}
   153 \begin{def:syntax}
   154 Let $\Prop$ be the countable set of \emph{atomic propositions}, LTL-formulae $\varphi$ are defined using following productions:
   155 \[\varphi ::= p \in \Prop \,|\, \neg \varphi \,|\, \varphi \lor \varphi \,|\, \X \varphi \,|\, \varphi \U \varphi\]
   156 \begin{itemize}
   157 \item $\neg, \lor$ corresponds to the Boolean \emph{negation} and \emph{disjunction}.
   158 \item $\X$ reads \emph{next}.
   159 \item $\U$ reads \emph{until}.
   160 \end{itemize}
   161 \end{def:syntax}
   162 \end{frame}
   163 
   164 \begin{frame}
   165 \frametitle{Linear Temporal Logic}
   166 \framesubtitle{Semantics}
   167 \begin{def:frames}
   168 An LTL-\emph{frame} is a tuple $\F = (S, R)$:
   169 \begin{itemize}
   170 \item $S = \{s_i \mid i \in \N\}$ is the set of states.
   171 \item $R = \{(s_i, s_{i+1}) \mid i \in \N\}$ is the accessibility relation.
   172 \end{itemize} 
   173 \end{def:frames}
   174 
   175 \begin{def:models}
   176 An LTL-\emph{model} is a tuple $\M = (\F, V)$:
   177 \begin{itemize}
   178 \item $\F$ is a \emph{frame}.
   179 \item $V: S \to 2^\Prop$ is a \emph{valuation function}.
   180 \item Intuitively we say $p \in \Prop$ is \emph{true} at time instant $i$ iff $p \in V(i)$. 
   181 \end{itemize}
   182 \end{def:models}
   183 \end{frame}
   184 
   185 \begin{frame}
   186 \frametitle{Linear Temporal Logic}
   187 \framesubtitle{Model Example}
   188 \begin{figure}
   189 \centering
   190 \begin{tikzpicture}[shorten >=1pt, node distance=2.5cm, auto, semithick, >=stealth   
   191     ,accepting/.style={fill, gray!50!black, text=white}]
   192 \node[state, initial, initial text=] (s_0) {$\{p_0\}$};
   193 \path (s_0) [late options={label=below:$s_0$}];
   194 \node[state] (s_1) [right of= s_0] {$\{p_0, p_2\}$};
   195 \path (s_1) [late options={label=below:$s_1$}];
   196 \node[state] (s_2) [right of= s_1] {$\{p_1\}$};
   197 \path (s_2) [late options={label=below:$s_2$}];
   198 \node[state] (s_i) [right of= s_2] {$\{p_1\}$};
   199 \path (s_i) [late options={label=below:$s_i$}];
   200 \path[->] 
   201 (s_0) edge node {$R$} (s_1) 
   202 (s_1) edge node {$R$} (s_2);
   203 \path[dashed,->] 
   204 (s_2) edge node {$R$} (s_i); 
   205 \end{tikzpicture}
   206 \end{figure}
   207 \end{frame}
   208 
   209 \begin{frame}
   210 \frametitle{Linear Temporal Logic}
   211 \framesubtitle{Satisfiability}
   212 \begin{def:satisfiability}
   213 A model $\M = (\F, V)$ \emph{satisfies} a formula $\varphi$ at time instant $i$ is denoted by $\M,i \models \varphi$:
   214 \begin{itemize}
   215 \item $\M,i \models p$ for $p \in \Prop \iff p \in V(i)$
   216 \item $\M,i \models \neg \varphi \iff$ not $\M,i \models \varphi$
   217 \item $\M,i \models \varphi \lor \psi \iff \M,i \models \varphi$ or $\M,i \models \psi$
   218 \item $\M,i \models \X \varphi \iff \M,i+1 \models \varphi$
   219 \item $\M,i \models \varphi \U \psi \iff \exists{k \geq i}: \M,k \models \psi$ and $\forall{i \leq j < k}: \M,j \models\varphi$
   220 \end{itemize}
   221 \end{def:satisfiability}
   222 \end{frame}
   223 
   224 \begin{frame}
   225 \frametitle{Reactive Systems}
   226 \framesubtitle{Infinite inputs}
   227 \begin{figure}
   228 \centering
   229 
   230 \subfigure{
   231 \begin{tikzpicture}[shorten >=1pt, node distance=1.5cm, semithick, >=stealth   
   232     ,accepting/.style={fill, gray!50!black, text=white}]
   233 \node[state, initial, initial text=$input$] (p) {$Program$};
   234 \coordinate (b) at (1.1,0);
   235         %\coordinate (b) at ($(a)+1/2*(3,3)$);
   236 \draw (p) edge[->] node[right] {$\,output$} (b);
   237 %\draw[->] (p) -- (b);
   238 \end{tikzpicture}
   239 }
   240 
   241 \subfigure{
   242 \begin{tikzpicture}[shorten >=1pt, node distance=1.5cm, semithick, >=stealth   
   243     ,accepting/.style={fill, gray!50!black, text=white}]
   244 \node[state, initial, initial text=] (s_0) {$a$};
   245 \node[state] (s_1) [right of= s_0] {$b$};
   246 \node[state] (s_2) [right of= s_1] {$a$};
   247 \node[state] (s_i) [right of= s_2] {$a$};
   248 \path[->] 
   249 (s_0) edge node {} (s_1) 
   250 (s_1) edge node {} (s_2);
   251 \path[dashed,->] 
   252 (s_2) edge node {} (s_i); 
   253 \end{tikzpicture}
   254 }
   255 \end{figure}
   256 \end{frame}
   257 
   258 \begin{frame}
   259 \frametitle{Automata}
   260 \framesubtitle{Example 1/2}
   261 \begin{figure}
   262 \centering
   263 \only<-3>{
   264 \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   265     %every state/.style={fill, draw=none, gray, text=white},
   266     ,accepting/.style={fill, gray!50!black, text=white}
   267     %initial/.style ={gray, text=white}]%,  thick]
   268     ]
   269 \node[state,initial, initial text=] (q_0) {$q_0$};
   270 \node[state] (q_1) [above right of= q_0] {$q_1$};
   271 \node[state,accepting](q_2) [below right of= q_1] {$q_2$};
   272 \path[->] 
   273 (q_0) edge node {$a$} (q_1)
   274   edge [loop above] node {$b$} ()
   275 (q_1) edge node {$b$} (q_2)
   276   edge [loop above] node {$a$} ()
   277 (q_2) %edge node {$a$} (q_1)
   278   edge node {$b$} (q_0);
   279 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);
   280 \end{tikzpicture}\\
   281 \vspace{10pt}
   282 \visible<2-3>{$w_1 = \overline{bbaa} \implies \rho_1 = q_0q_0\overline{q_0q_1q_1q_2}$}\\
   283 \visible<3>{$w_2 = bb\overline{ab} \implies \rho_2 = q_0q_0\overline{q_1q_2}$}\\
   284 \vspace{10pt}
   285 \visible<4>{Accepts all inputs with infinite occurrences of $ab$.}
   286 }
   287 
   288 \only<4>{
   289 \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   290     %every state/.style={fill, draw=none, gray, text=white},
   291     ,accepting/.style={fill, gray!50!black, text=white}
   292     %initial/.style ={gray, text=white}]%,  thick]
   293     ]
   294 \node[state,initial, initial text=] (q_0) {$q_0$};
   295 \node[state] (q_1) [above right of= q_0] {$q_1$};
   296 \node[state,accepting](q_2) [below right of= q_1] {$q_2$};
   297 \path[->] 
   298 (q_0) 
   299   edge [loop above] node {$b$} ()
   300 (q_1) 
   301   edge [loop above] node {$a$} ()
   302 (q_2) %edge node {$a$} (q_1)
   303   edge node {$b$} (q_0);
   304 \color{green}
   305 \path[->] 
   306 (q_0) edge node {$a$} (q_1) 
   307 (q_1) edge node {$b$} (q_2);
   308 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);
   309 \end{tikzpicture}\\
   310 \color{black}
   311 \vspace{10pt}
   312 \visible<2->{$w_1 = \overline{\textcolor{green}{b}ba\textcolor{green}{a}} \implies \rho_1 = q_0q_0\overline{q_0q_1q_1\textcolor{green}{q_2}}$}\\
   313 \visible<3->{$w_2 = bb\overline{\textcolor{green}{ab}} \implies \rho_2 = q_0q_0\overline{q_1\textcolor{green}{q_2}}$}\\
   314 \vspace{10pt}
   315 \visible<4>{Accepts all inputs with infinite occurrences of $ab$.}
   316 }
   317 %Automaton $\A_1$
   318 \end{figure}
   319 \end{frame}
   320 
   321 \begin{frame}
   322 \frametitle{Automata}
   323 \framesubtitle{Example 2/2 (Complement)}
   324 \begin{figure}
   325 \centering
   326 \only<1>{
   327   \subfigure
   328             {
   329               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   330                   %every state/.style={fill, draw=none, gray, text=white},
   331                   ,accepting/.style={fill, gray!50!black, text=white}
   332                   %initial/.style ={gray, text=white}]%,  thick]
   333                 ]
   334                 \node[state,initial, initial text=, accepting] (q_0) {$q_0$};
   335                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   336                 \node[state](q_2) [below right of= q_1] {$q_2$};
   337                 \path[->] 
   338                 (q_0) edge node {$a$} (q_1)
   339                 edge [loop above] node {$b$} ()
   340                 (q_1) edge node {$b$} (q_2)
   341                 edge [loop above] node {$a$} ()
   342                 (q_2) %edge node {$a$} (q_1)
   343                 edge node {$b$} (q_0);
   344                 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);
   345               \end{tikzpicture}
   346             }
   347 }
   348 \only<2>{ 
   349   \subfigure
   350             {
   351               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   352                   %every state/.style={fill, draw=none, gray, text=white},
   353                   ,accepting/.style={fill, gray!50!black, text=white}
   354                   %initial/.style ={gray, text=white}]%,  thick]
   355                 ]
   356                 \node[state,initial, initial text=, accepting] (q_0) {$q_0$};
   357                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   358                 \node[state](q_2) [below right of= q_1] {$q_2$};
   359                 \path[->] 
   360                 (q_0) 
   361                 edge [loop above] node {$b$} ()
   362                 (q_1) 
   363                 edge [loop above] node {$a$} ();                
   364                 \color{red}  
   365                 \path[->] 
   366                 (q_0) edge node {$a$} (q_1)
   367                 (q_1) edge node {$b$} (q_2)
   368                 (q_2) edge node {$b$} (q_0);  
   369                 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);              
   370               \end{tikzpicture}  \color{red}  
   371             }
   372  \color{black}
   373 }
   374 \only<3->{ \setcounter{subfigure}{0} 
   375   \subfigure[Complement automaton \cross]
   376             {
   377               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth
   378                   %every state/.style={fill, draw=none, gray, text=white},
   379                   ,accepting/.style={fill, gray!50!black, text=white}
   380                   %initial/.style ={gray, text=white}]%,  thick]
   381                 ]
   382                 \node[state,initial, initial text=, accepting] (q_0) {$q_0$};
   383                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   384                 \node[state](q_2) [below right of= q_1] {$q_2$};
   385                 \path[->] 
   386                 (q_0) 
   387                 edge [loop above] node {$b$} ()
   388                 (q_1) 
   389                 edge [loop above] node {$a$} ();                
   390                 \path[->] 
   391                 (q_0) edge node {$a$} (q_1)
   392                 (q_1) edge node {$b$} (q_2)
   393                 (q_2) edge node {$b$} (q_0);  
   394                 \draw[->] (q_2) .. controls +(up:1cm) and +(right:1cm) .. node[above] {$a$} (q_1);              
   395               \end{tikzpicture}  \color{red}  
   396             }
   397  \color{black}
   398 }
   399 %\hspace{10pt}
   400 \visible<3->{
   401   \subfigure[Complement automaton \checkmark]
   402             {
   403               \label{fig:complement automaton}
   404               \begin{tikzpicture}[shorten >=1pt, node distance=2cm, auto, semithick, >=stealth   
   405                   ,accepting/.style={fill, gray!50!black, text=white}]
   406                 \node[state, initial, initial text=] (q_0) {$q_0$};
   407                 \node[state, accepting] (q_1) [above right of= q_0] {$q_1$};
   408                 \node[state, accepting](q_2) [below right of= q_1] {$q_2$};
   409                 \path[->] 
   410                 (q_0) edge node {$a$} (q_1)
   411                 edge node {$b$} (q_2)
   412                 edge [loop above] node {$a, b$} ()
   413                 (q_1) edge [loop above] node {$a$} ()
   414                 (q_2) 
   415                 edge [loop above] node {$b$} ();
   416               \end{tikzpicture}\color{green}  
   417             }\\
   418 \color{black}  
   419 \vspace{20pt}
   420 Accepts all inputs with finite many $ab$.
   421 }
   422 %\caption{Automata from Example \ref{ex:automaton}}
   423 \end{figure}
   424 \end{frame}
   425 \color{black}  
   426 
   427 \begin{frame}
   428 \frametitle{Automata}
   429 \framesubtitle{Definition}
   430 \begin{def:buechi automata}
   431 A non-deterministic B\"uchi automaton is a tuple $\A = (\Sigma, S, S_0, \Delta, F)$ with:
   432 \begin{itemize}
   433 \item $\Sigma$ is a finite \emph{alphabet}.
   434 \item $S$ is a finite set of \emph{states}.
   435 \item $S_0 \subseteq S$ is the set of \emph{initial states}.
   436 \item $\Delta: S \times \Sigma \times S$ is a \emph{transition relation}.
   437 \item $F \subseteq S$ is the set of \emph{accepting states}.
   438 \end{itemize}
   439 \end{def:buechi automata}
   440 \end{frame}
   441 
   442 \begin{frame}
   443 \frametitle{Automata}
   444 \framesubtitle{Runs}
   445 \begin{def:automata runs}
   446 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton:
   447 \begin{itemize}
   448 \item A run $\rho$ of $\A$ on an infinite word $w = a_0,a_1,...$ is a sequence $\rho = s_0,s_1,...$:
   449 \begin{itemize}
   450 \item $s_0 \in S_0$.
   451 \item $(s_i, a_i, s_{i+1}) \in \Delta$, for all $i \geq 0$.
   452 \end{itemize}
   453 \item Alternative view of a run $\rho$ as a function $\rho : \N \to S$, with $\rho(i) = s_i$.
   454 \end{itemize}
   455 \end{def:automata runs}
   456 \visible<2->{\[w_1 = \overline{\textcolor{green}{b}ba\textcolor{green}{a}} \implies \rho_1 = q_0q_0\overline{q_0q_1q_1\textcolor{green}{q_2}}\]
   457 \[w_2 = bb\overline{\textcolor{green}{ab}} \implies \rho_2 = q_0q_0\overline{q_1\textcolor{green}{q_2}}\]}
   458 \end{frame}
   459 
   460 \begin{frame}
   461 \frametitle{Automata}
   462 \framesubtitle{Acceptance}
   463 \begin{def:inf}
   464 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $\A$:
   465 \begin{itemize}
   466 \item $\exists^\omega$ denotes the existential quantifier for \emph{infinitely} many occurrences.
   467 \item $inf(\rho) = \{s \in S \mid \exists^\omega{n \in \N}: \rho(n) = s\}$.
   468 \end{itemize}
   469 \end{def:inf}
   470 
   471 \begin{def:automata acceptance}
   472 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $\A$:
   473 \begin{itemize}
   474 \item $\rho$ is \emph{accepting} iff $inf(\rho) \cap F \neq \emptyset$.
   475 \item $\A$ \emph{accepts} an input word $w$ iff there exists a run $\rho$ of $\A$ on $w$, such that $\rho$ is accepting. 
   476 \end{itemize}
   477 \end{def:automata acceptance}
   478 \end{frame}
   479 
   480 \begin{frame}
   481 \frametitle{Automata}
   482 \framesubtitle{Language}
   483 \begin{def:automata language}
   484 Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton:
   485 \begin{itemize}
   486 \item $L_\omega(\A) = \{w \in \Sigma^\omega \mid \A \text{ accepts } w\}$, we say $\A$ recognises language $L_\omega(\A)$.
   487 \item Language $L$ is \emph{B\"uchi-recognisable} iff there is an automaton $\A$ with $L = L_\omega(\A)$.
   488 \end{itemize}
   489 \end{def:automata language}
   490 \end{frame}
   491 
   492 \begin{frame}
   493 \frametitle{Generalised Automata}
   494 \begin{def:general automata}
   495 A \emph{generalised B\"uchi automaton} is a tuple $\A_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i<k})$:
   496 \begin{itemize}
   497 \item $\{F_i\}$ is a finite set of sets for a given $k$.
   498 \item Each $F_i \subseteq S$ is a finite set of accepting states.
   499 \end{itemize}
   500 \end{def:general automata}
   501 
   502 \begin{def:general acceptance}
   503 Let $\A_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i<k})$ be a generalised automaton and let $\rho$ be a run of $\A_G$:
   504 \begin{itemize}
   505 \item $\rho$ is \emph{accepting} iff $\forall{i < k}: inf(\rho) \cap F_i \neq \emptyset$.
   506 \item $\A_G$ \emph{accepts} an input word $w$ iff there exists a run $\rho$ of $\A_G$ on $w$, such that $\rho$ is accepting. 
   507 \end{itemize} 
   508 \end{def:general acceptance}
   509 
   510 \begin{prop:general equiv}
   511 Let $\A_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i < k})$ be a generalised automaton and let $\A_i = (\Sigma, S, S_0, \Delta, F_i)$ be non-deterministic automata:
   512 \[L_\omega(\A_G) = \bigcap_{i < k} L_\omega(\A_i)\]
   513 \end{prop:general equiv}
   514 \end{frame}
   515 
   516 \begin{frame}
   517 \frametitle{Automata Construction}
   518 \framesubtitle{Formula automata}
   519 \begin{center}
   520 Model $\M_\varphi$ for formula $\varphi$\\
   521 $\Downarrow$\\
   522 Closure $CL(\varphi)$ of $\varphi$\\
   523 $\Downarrow$\\
   524 Automaton $\A_\varphi$ for $\varphi$\\
   525 \vspace{20pt}
   526 \textcolor{red}{On-the-fly methods} \`a la Gerth et al.
   527 \end{center}
   528 \end{frame}
   529 
   530 \begin{frame}
   531 \frametitle{Automata Construction}
   532 \framesubtitle{System automata}
   533 \begin{center}
   534 Model $\M_\varphi$ for formula $\varphi$\\
   535 $\Downarrow$\\
   536 Closure $CL(\varphi)$ of $\varphi$\\
   537 $\Downarrow$\\
   538 Automaton $\A_\varphi$ for $\varphi$
   539 \end{center}
   540 \end{frame}
   541 
   542 \begin{frame}
   543 \frametitle{Model Checking}
   544 \framesubtitle{Definition}
   545 \begin{thm:model checking}
   546 \label{thm:model checking}
   547 Let $\A_P$ be the automaton for program $P$ and let $\A_\varphi$ be the automaton for formula $\varphi$.\\
   548 P satisfies $\varphi$ iff:
   549 \begin{itemize}
   550 \item $L_\omega(\A_P) \subseteq L_\omega(\A_\varphi)$.
   551 \item $L_\omega(\A_P) \cap L_\omega(\A_{\neg \varphi}) = \emptyset$.
   552 \end{itemize}
   553 \end{thm:model checking}
   554 \end{frame}
   555 
   556 \begin{frame}[allowframebreaks]
   557 \frametitle<presentation>{Literature}    
   558 \begin{thebibliography}{10}    
   559 
   560 \beamertemplatearticlebibitems
   561 \bibitem{ref:ltl&büchi}
   562 Madhavan Mukund.
   563 \newblock {\em Linear-Time Temporal Logic and B\"uchi Automata}.
   564 \newblock Winter School on Logic and Computer Science, Indian Statistical Institute, Calcutta, 1997.
   565   
   566 \beamertemplatearticlebibitems
   567 \bibitem{ref:alternating verification}
   568 Moshe Y. Vardi.
   569 \newblock {\em Alternating Automata and Program Verification}.
   570 \newblock Computer Science Today, Volume 1000 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1995.
   571 
   572 \beamertemplatebookbibitems
   573 \bibitem{ref:handbook}
   574 Patrick Blackburn and Frank Wolter and Johan van Benthem.
   575 \newblock {\em Handbook of Modal Logic}.
   576 \newblock 3rd Edition, Elsevier, Amsterdam, Chapter 11 P. 655-720 and Chapter 17 P. 975-989, 2007.
   577 
   578 \end{thebibliography}
   579 \end{frame}
   580 
   581 \end{document}