Algorithmic Verification of Reactive Systems

Eugen Sawin

Research Group for Foundations in Artificial Intelligence Computer Science Department University of Freiburg

Seminar: Automata Constructions in Model Checking

Eugen Sawin (University of Freiburg)

Algorithmic Verification

イロト イ団ト イヨト イヨト ヨー のへで SS 2011 1 / 24

Motivation

Model Checking 1/2

 $\mathcal{M}\models\varphi$

Eugen Sawin (University of Freiburg)

Algorithmic Verification

・ロト ・日 ・ ・ ヨ ・ うへぐ

SS 2011 2 / 24

Motivation Model Checking 2/2

Given a program *P* and specification φ :

does every run of P satisfy φ ?

Eugen Sawin (University of Freiburg)

Algorithmic Verification

SS 2011 3 / 24

Motivation

Industry

Eugen Sawin (University of Freiburg)

Algorithmic Verification

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ 今 へ ぐ

SS 2011 4 / 24

Motivation

Industry

SS 2011 4 / 24

"It is dark."

> "It is dark." "It is *always* dark."

"It is dark." "It is *always* dark." "It is *currently* dark."

"It is dark." "It is *always* dark." "It is *currently* dark." "It will *necessarily* be dark."

"It is dark." "It is *always* dark." "It is *currently* dark." "It will *necessarily* be dark." "It is dark *until* someone puts the light on."

lt is dark	until	there is light
p_0	U	p_1

ロ > < 日 > < 三 > < 三 > < 三 > < 三 > へ ○

SS 2011 6 / 24

Linear Temporal Logic _{Syntax}

Syntax

Let \mathcal{P} be the countable set of *atomic propositions*, LTL-formulae φ are defined using following productions:

$$\varphi ::= \mathbf{p} \in \mathcal{P} \,|\, \neg \varphi \,|\, \varphi \lor \varphi \,|\, \mathcal{X} \varphi \,|\, \varphi \mathcal{U} \varphi$$

 ${\hfill \circ \neg}, {\hfill \lor}$ corresponds to the Boolean $\mathit{negation}$ and $\mathit{disjunction}.$

- X reads next.
- U reads until.

イロト イロト イヨト イヨト

Linear Temporal Logic _{Syntax}

Syntax

Let \mathcal{P} be the countable set of *atomic propositions*, LTL-formulae φ are defined using following productions:

$$\varphi ::= \mathbf{p} \in \mathcal{P} \,|\, \neg \varphi \,|\, \varphi \lor \varphi \,|\, \mathcal{X}\varphi \,|\, \varphi \mathcal{U}\varphi$$

 ${\hfill \circ \neg, \lor}$ corresponds to the Boolean $\mathit{negation}$ and $\mathit{disjunction}.$

- X reads next.
- ${\mathcal U}$ reads until.

Derived connectives

Let φ and ψ be formulae:

$$\begin{array}{l} \circ \ \top \equiv p \lor \neg p \text{ for } p \in \mathcal{P} \\ \circ \ \bot \equiv \neg \top \\ \circ \ \varphi \land \psi \equiv \neg (\neg \varphi \lor \neg \psi) \\ \circ \ \varphi \rightarrow \psi \equiv \neg \varphi \lor \psi \end{array} \qquad \circ \begin{array}{l} \circ \ \varphi \leftrightarrow \psi \equiv (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi) \\ \circ \ \Diamond \varphi \equiv \top \mathcal{U}\varphi \\ \circ \ \Box \varphi \equiv \neg \Diamond \neg \varphi \end{array}$$

Eugen Sawin (University of Freiburg)

イロト イポト イヨト イヨト

Linear Temporal Logic Semantics

Frame

An LTL-*frame* is a tuple $\mathcal{F} = (S, R)$:

- $S = \{s_i \mid i \in \mathbb{N}_0\}$ is the set of states.
- $R = \{(s_i, s_{i+1}) \mid i \in \mathbb{N}_0\}$ is the accessibility relation.

Model

An LTL-model is a tuple $\mathcal{M} = (\mathcal{F}, V)$:

- \mathcal{F} is a frame.
- $V: S \to 2^{\mathcal{P}}$ is a valuation function.
- Intuitively we say $p \in \mathcal{P}$ is *true* at time instant *i* iff $p \in V(i)$.

イロト イポト イヨト イヨト 二日

Linear Temporal Logic Model Example

<ロト < 部ト < 主ト < 主ト 主 のへで SS 2011 9 / 24

Linear Temporal Logic Satisfiability

Satisfiability

A model $\mathcal{M} = (\mathcal{F}, V)$ satisfies a formula φ at time instant i is denoted by $\mathcal{M}, i \models \varphi$: • $\mathcal{M}, i \models p$ for $p \in \mathcal{P} \iff p \in V(i)$ • $\mathcal{M}, i \models \neg \varphi \iff \text{not } \mathcal{M}, i \models \varphi$ • $\mathcal{M}, i \models \varphi \lor \psi \iff \mathcal{M}, i \models \varphi$ or $\mathcal{M}, i \models \psi$ • $\mathcal{M}, i \models \mathcal{X}\varphi \iff \mathcal{M}, i + 1 \models \varphi$ • $\mathcal{M}, i \models \varphi \mathcal{U}\psi \iff \exists k \ge i : \mathcal{M}, k \models \psi$ and $\forall i \le j < k : \mathcal{M}, j \models \varphi$

SS 2011 10 / 24

イロト イポト イヨト イヨト

Reactive Systems

Reactive Systems

<ロ > < 回 > < 回 > < 三 > < 三 > 三 の Q (~ SS 2011 11 / 24

Example 1/2

Eugen Sawin (University of Freiburg)

Algorithmic Verification

ロ > < 回 > < 三 > < 三 > < 三 > への
 への

SS 2011 12 / 24

Example 1/2

$$w_1 = \overline{bbaa} \implies \rho_1 = q_0 q_0 \overline{q_0 q_1 q_1 q_2}$$

Eugen Sawin (University of Freiburg)

Example 1/2

$$w_1 = \overline{bbaa} \implies \rho_1 = q_0 q_0 \overline{q_0 q_1 q_1 q_2}$$
$$w_2 = bb\overline{ab} \implies \rho_2 = q_0 q_0 \overline{q_1 q_1 q_2}$$

Eugen Sawin (University of Freiburg)

Example 1/2

Accepts all inputs with infinite occurrences of ab.

Eugen Sawin (University of Freiburg)

Algorithmic Verification

3 SS 2011 12 / 24

990

< ロト < 回ト < 三ト < 三ト</p>

Automata Example 2/2 (Complement)

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

SS 2011 13 / 24

Automata Example 2/2 (Complement)

ロ > < 日 > < 三 > < 三 > < 三 > < ○ へ ○
</p>

SS 2011 13 / 24

Automata Example 2/2 (Complement)

Accepts all inputs with finite many ab.

Eugen Sawin (University of Freiburg)

Algorithmic Verification

< □ > < □ > < □ > < 三 > < 三 > 三 のへで SS 2011 13 / 24

Definition

Automaton

A non-deterministic Büchi automaton is a tuple $\mathcal{A}=(\Sigma, {\it S}, {\it S}_0, \Delta, {\it F})$ with:

- Σ is a finite *alphabet*.
- S is a finite set of states.
- $S_0 \subseteq S$ is the set of *initial states*.
- $\Delta : S \times \Sigma \times S$ is a transition relation.
- $F \subseteq S$ is the set of *accepting states*.

< = > < = > < = > < = >

Runs

Run

Let $\mathcal{A} = (\Sigma, S, S_0, \Delta, F)$ be an automaton:

- A run ρ of A on an infinite word $w = a_0, a_1, ...$ is a sequence $\rho = s_0, s_1, ...$:
 - $s_0 \in S_0$.
 - $(s_i, a_i, s_{i+1}) \in \Delta$, for all $i \ge 0$.

• Alternative view of a run ρ as a function $\rho : \mathbb{N}_0 \to S$, with $\rho(i) = s_i$.

Runs

Run

Let $\mathcal{A} = (\Sigma, S, S_0, \Delta, F)$ be an automaton:

- A run ρ of A on an infinite word $w = a_0, a_1, ...$ is a sequence $\rho = s_0, s_1, ...$:
 - $s_0 \in S_0$.
 - $(s_i, a_i, s_{i+1}) \in \Delta$, for all $i \ge 0$.

• Alternative view of a run ρ as a function $\rho : \mathbb{N}_0 \to S$, with $\rho(i) = s_i$.

$$w_1 = \overline{b}baa \implies \rho_1 = q_0 q_0 \overline{q_0 q_1 q_1 q_2}$$
$$w_2 = b\overline{bab} \implies \rho_2 = q_0 q_0 \overline{q_1 q_2}$$

Eugen Sawin (University of Freiburg)

SS 2011 15 / 24

500

< = > < 률 > < 글 > < 글 > < 글</p>

Acceptance

Infinite occurrences

Let $\mathcal{A} = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let ρ be a run of \mathcal{A} :

- ${\ \circ \ } \exists^{\omega}$ denotes the existential quantifier for infinitely many occurrences.
- $inf(\rho) = \{s \in S \mid \exists^{\omega} n \in \mathbb{N}_0 : \rho(n) = s\}.$

Acceptance

Let $\mathcal{A} = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let ρ be a run of \mathcal{A} :

- ρ is accepting iff $inf(\rho) \cap F \neq \emptyset$.
- A accepts an input word w iff there exists a run ρ of A on w, such that ρ is accepting.

イロト イポト イヨト イヨト 二日

Language

Recognised language

Let $\mathcal{A} = (\Sigma, S, S_0, \Delta, F)$ be an automaton:

• $L_{\omega}(\mathcal{A}) = \{ w \in \Sigma^{\omega} \mid \mathcal{A} \text{ accepts } w \}$, we say \mathcal{A} recognises language $L_{\omega}(\mathcal{A})$.

• Language L is Büchi-recognisable iff there is an automaton \mathcal{A} with $L = L_{\omega}(\mathcal{A})$.

イロト イヨト イモト イモト 三日

Generalised Automata

Generalised automaton

A generalised Büchi automaton is a tuple $A_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i < k})$:

- $\{F_i\}$ is a finite set of sets for a given k.
- Each $F_i \subseteq S$ is a finite set of accepting states.

Acceptance

Let $\mathcal{A}_{G} = (\Sigma, S, S_{0}, \Delta, \{F_{i}\}_{i < k})$ be a generalised automaton and let ρ be a run of \mathcal{A}_{G} :

- ρ is accepting iff $\forall i < k : inf(\rho) \cap F_i \neq \emptyset$.
- A_G accepts an input word w iff there exists a run ρ of A_G on w, such that ρ is accepting.

Proposition

Let $\mathcal{A}_G = (\Sigma, S, S_0, \Delta, \{F_i\}_{i < k})$ be a generalised automaton and let $\mathcal{A}_i = (\Sigma, S, S_0, \Delta, F_i)$ be non-deterministic automata:

$$L_{\omega}(\mathcal{A}_G) = \bigcap_{i < k} L_{\omega}(\mathcal{A}_i)$$

Eugen Sawin (University of Freiburg)

イロト イポト イヨト イヨト

Formula automata

Eugen Sawin (University of Freiburg)

SS 2011 19 / 24

996

イロト イポト イモト イモト 一日

Formula automata

On-the-fly method à la Gerth et al.

Eugen Sawin (University of Freiburg)

Algorithmic Verification

System automata 1/2

Program

Given a program $P = (S_P, s_0, R, V)$:

- S is the set of possible states.
- s_0 is the initial state.

• $R: S \times P \times S$ is the transition relation.

• $V: S \to 2^{\mathcal{P}}$ is a valuation function.

A computation of P is a run $\rho = (V(s_0), V(s_1), ...)$.

System automaton

We construct automaton $\mathcal{A}_{P} = (\Sigma, S, S_{0}, \Delta, F)$ for program P:

• $\Sigma = 2^{\mathcal{P}}$ • $S_0 = \{s_0\}$

•
$$S = S_P$$
 • $F = S$

• $\Delta = \{(s, V(s), s') \mid \exists a \in \mathcal{P} : (s, a, s') \in R\}$

Eugen Sawin (University of Freiburg)

SS 2011 20 / 24

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

System automata 2/2

Proposition

Let $\mathcal{A}_{P} = (\Sigma, S, S_{0}, \Delta, F)$, note that F = S, it follows:

 $L_{\omega}(\mathcal{A}_{\mathcal{P}}) = \{ \rho \mid \rho \text{ is a run of } \mathcal{A}_{\mathcal{P}} \}$

Eugen Sawin (University of Freiburg)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Verification

Given a program P and specification φ :

does every run of P satisfy φ ?

Eugen Sawin (University of Freiburg)

Algorithmic Verification

<ロト < 団 ト < 臣 ト < 臣 ト 三 三 の < で</p> SS 2011

22 / 24

Verification

Given a program P and specification φ :

$L_\omega(\mathcal{A}_P)\subseteq L_\omega(\mathcal{A}_arphi)$

Eugen Sawin (University of Freiburg)

Algorithmic Verification

・ロ・・母・・ヨ・・ヨ・ シック

SS 2011 22 / 24

Verification

Given a program P and specification φ :

 $L_\omega(\mathcal{A}_P)\cap L_\omega(\mathcal{A}_{\negarphi})=\emptyset$

Eugen Sawin (University of Freiburg)

Algorithmic Verification

・ロット 4 聞 > 4 回 > 4 回 > 1 の 4 の

SS 2011 22 / 24

Literature I

Madhavan Mukund.

Linear-Time Temporal Logic and Büchi Automata.

Winter School on Logic and Computer Science, Indian Statistical Institute, Calcutta, 1997

Moshe Y. Vardi

Alternating Automata and Program Verification.

Computer Science Today, Volume 1000 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1995.

Rob Gerth, Doron Peled, Moshe Y. Vardi and Pierre Wolper. Simple On-the-fly Automatic Verification of Linear Temporal Logic. Proceeding IFIO/WG6.1 Symposium on Protocol Specification, Testing and Verification, Warsaw, 1995.

Patrick Blackburn, Frank Wolter and Johan van Benthem. Handbook of Modal Logic.

3rd Edition, Elsevier, Amsterdam, Chapter 11 P. 655-720 and Chapter 17 P. 975-989, 2007.

Eugen Sawin (University of Freiburg)

SS 2011 23 / 24

イロト イポト イヨト イヨト

Literature II

Moshe Y. Vardi.

Automated Verification: Graphs, Logic and Automata.

Proceeding of the International Joint Conference on Artificial Intelligence, Acapulco, 2003.