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Motivation
Model Checking 1/2

M |= ϕ
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Motivation
Model Checking 2/2

Given a program P and specification ϕ:

does every run of P satisfy ϕ?
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Motivation
Industry
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Linear Temporal Logic
Natural language 1/2

“It is dark.”

“It is always dark.”
“It is currently dark.”

“It will necessarily be dark.”
“It is dark until someone puts the light on.”
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Linear Temporal Logic
Natural language 2/2

It is dark until there is light

p0 U p1
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Linear Temporal Logic
Syntax

Syntax

Let P be the countable set of atomic propositions, LTL-formulae ϕ are defined using
following productions:

ϕ ::= p ∈ P |¬ϕ |ϕ ∨ ϕ | Xϕ |ϕUϕ

¬,∨ corresponds to the Boolean negation and disjunction.

X reads next.

U reads until.

Derived connectives

Let ϕ and ψ be formulae:

> ≡ p ∨ ¬p for p ∈ P
⊥ ≡ ¬>
ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ)

ϕ→ ψ ≡ ¬ϕ ∨ ψ

ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ)

♦ϕ ≡ >Uϕ

�ϕ ≡ ¬♦¬ϕ
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Linear Temporal Logic
Semantics

Frame

An LTL-frame is a tuple F = (S ,R):

S = {si | i ∈ N0} is the set of states.

R = {(si , si+1) | i ∈ N0} is the accessibility relation.

Model

An LTL-model is a tuple M = (F ,V ):

F is a frame.

V : S → 2P is a valuation function.

Intuitively we say p ∈ P is true at time instant i iff p ∈ V (i).
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Linear Temporal Logic
Model Example

{p0}

s0

{p0, p2}

s1

{p1}

s2

{p1}

si

R R R
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Linear Temporal Logic
Satisfiability

Satisfiability

A model M = (F ,V ) satisfies a formula ϕ at time instant i is denoted by M, i |= ϕ:

M, i |= p for p ∈ P ⇐⇒ p ∈ V (i)

M, i |= ¬ϕ ⇐⇒ not M, i |= ϕ

M, i |= ϕ ∨ ψ ⇐⇒ M, i |= ϕ or M, i |= ψ

M, i |= Xϕ ⇐⇒ M, i + 1 |= ϕ

M, i |= ϕUψ ⇐⇒ ∃k ≥ i :M, k |= ψ and ∀i ≤ j < k :M, j |= ϕ
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Reactive Systems
Infinite inputs

Pinput output

(a) Terminating program

RPevent action

(b) Reactive program
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Automata
Example 1/2

q0

q1

q2

a
b

b

a

b

a

w1 = bbaa =⇒ ρ1 = q0q0q0q1q1q2

w2 = bbab =⇒ ρ2 = q0q0q1q2

Accepts all inputs with infinite occurrences of ab.

Eugen Sawin (University of Freiburg) Algorithmic Verification SS 2011 12 / 24



Automata
Example 1/2

q0

q1

q2

a
b

b

a

b

a

w1 = bbaa =⇒ ρ1 = q0q0q0q1q1q2

w2 = bbab =⇒ ρ2 = q0q0q1q2

Accepts all inputs with infinite occurrences of ab.

Eugen Sawin (University of Freiburg) Algorithmic Verification SS 2011 12 / 24



Automata
Example 1/2

q0

q1

q2

a
b

b

a

b

a

w1 = bbaa =⇒ ρ1 = q0q0q0q1q1q2

w2 = bbab =⇒ ρ2 = q0q0q1q2

Accepts all inputs with infinite occurrences of ab.

Eugen Sawin (University of Freiburg) Algorithmic Verification SS 2011 12 / 24



Automata
Example 1/2

q0

q1

q2

b

a

b

a b

a

w1 = bbaa =⇒ ρ1 = q0q0q0q1q1q2

w2 = bbab =⇒ ρ2 = q0q0q1q2

Accepts all inputs with infinite occurrences of ab.

Eugen Sawin (University of Freiburg) Algorithmic Verification SS 2011 12 / 24



Automata
Example 2/2 (Complement)

q0

q1

q2

a
b

b

a

b

a

q0

q1

q2

a

b

a, b

a

b

(d) Complement automaton X

Accepts all inputs with finite many ab.
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Automata
Example 2/2 (Complement)

q0
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(f) Complement automaton X

Accepts all inputs with finite many ab.
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Automata
Example 2/2 (Complement)

q0

q1

q2

b

a

a b

b

a

(a) Complement automaton 7

q0

q1

q2

a

b

a, b

a

b

(b) Complement automaton X

Accepts all inputs with finite many ab.
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Automata
Definition

Automaton

A non-deterministic Büchi automaton is a tuple A = (Σ, S , S0,∆,F ) with:

Σ is a finite alphabet.

S is a finite set of states.

S0 ⊆ S is the set of initial states.

∆ : S × Σ× S is a transition relation.

F ⊆ S is the set of accepting states.
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Automata
Runs

Run

Let A = (Σ, S , S0,∆,F ) be an automaton:

A run ρ of A on an infinite word w = a0, a1, ... is a sequence ρ = s0, s1, ...:
I s0 ∈ S0.
I (si , ai , si+1) ∈ ∆, for all i ≥ 0.

Alternative view of a run ρ as a function ρ : N0 → S , with ρ(i) = si .

w1 = bbaa =⇒ ρ1 = q0q0q0q1q1q2

w2 = bbab =⇒ ρ2 = q0q0q1q2
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Automata
Acceptance

Infinite occurrences

Let A = (Σ, S , S0,∆,F ) be an automaton and let ρ be a run of A:

∃ω denotes the existential quantifier for infinitely many occurrences.

inf (ρ) = {s ∈ S | ∃ωn ∈ N0 : ρ(n) = s}.

Acceptance

Let A = (Σ, S , S0,∆,F ) be an automaton and let ρ be a run of A:

ρ is accepting iff inf (ρ) ∩ F 6= ∅.
A accepts an input word w iff there exists a run ρ of A on w , such that ρ is
accepting.
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Automata
Language

Recognised language

Let A = (Σ, S , S0,∆,F ) be an automaton:

Lω(A) = {w ∈ Σω | A accepts w}, we say A recognises language Lω(A).

Language L is Büchi-recognisable iff there is an automaton A with L = Lω(A).
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Generalised Automata

Generalised automaton

A generalised Büchi automaton is a tuple AG = (Σ, S , S0,∆, {Fi}i<k):

{Fi} is a finite set of sets for a given k.

Each Fi ⊆ S is a finite set of accepting states.

Acceptance

Let AG = (Σ, S , S0,∆, {Fi}i<k) be a generalised automaton and let ρ be a run of AG :

ρ is accepting iff ∀i < k : inf (ρ) ∩ Fi 6= ∅.
AG accepts an input word w iff there exists a run ρ of AG on w , such that ρ is
accepting.

Proposition

Let AG = (Σ, S , S0,∆, {Fi}i<k) be a generalised automaton and let
Ai = (Σ, S ,S0,∆,Fi ) be non-deterministic automata:

Lω(AG ) =
⋂
i<k

Lω(Ai )
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Automata Construction
Formula automata

Model Mϕ for formula ϕ
⇓

Closure CL(ϕ) of ϕ
⇓

Automaton Aϕ for ϕ

On-the-fly method à la Gerth et al.
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Automata Construction
System automata 1/2

Program

Given a program P = (SP , s0,R,V ):

S is the set of possible states.

s0 is the initial state.

R : S × P × S is the transition relation.

V : S → 2P is a valuation function.

A computation of P is a run ρ = (V (s0),V (s1), ...).

System automaton

We construct automaton AP = (Σ,S ,S0,∆,F ) for program P:

Σ = 2P

S = SP

S0 = {s0}
F = S

∆ = {(s,V (s), s ′) | ∃a ∈ P : (s, a, s ′) ∈ R}
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Automata Construction
System automata 2/2

Proposition

Let AP = (Σ,S , S0,∆,F ), note that F = S, it follows:

Lω(AP) = {ρ | ρ is a run of AP}
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Verification

Given a program P and specification ϕ:

does every run of P satisfy ϕ?
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Verification

Given a program P and specification ϕ:

Lω(AP) ⊆ Lω(Aϕ)
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Verification

Given a program P and specification ϕ:

Lω(AP) ∩ Lω(A¬ϕ) = ∅
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