# HG changeset patch # User Eugen Sawin # Date 1312025374 -7200 # Node ID a58b1c34b2d84260dfcc5969d41cb50ad6314ae8 # Parent 33e7afb3f40263a4c3b4754735512fe5d0bfddfc Fixed paper header and satisfication. diff -r 33e7afb3f402 -r a58b1c34b2d8 paper/src/paper.tex --- a/paper/src/paper.tex Wed Jul 27 11:24:57 2011 +0200 +++ b/paper/src/paper.tex Sat Jul 30 13:29:34 2011 +0200 @@ -1,5 +1,4 @@ -\documentclass{beamer} -%\documentclass[a4paper, pagesize, DIV=calc, smallheadings]{article} +\documentclass[a4paper, pagesize, DIV=calc, smallheadings]{article} \usepackage{graphicx} %\usepackage[latin1]{inputenc} \usepackage{amsmath, amsthm, amssymb, amsfonts, verbatim} @@ -10,7 +9,7 @@ \usepackage{tikz} \usetikzlibrary{automata} \usepackage{sidecap} -\usepackage{wrapfig} +%\usepackage{wrapfig} \usepackage{subfig} %\usepackage{fullpage} %\usepackage{a4wide} @@ -62,7 +61,7 @@ \newtheorem*{def:vocabulary}{Vocabulary} \newtheorem*{def:frames}{Frames} \newtheorem*{def:models}{Models} -\newtheorem*{def:satisfiability}{Satisfiability} +\newtheorem*{def:satisfication}{Satisfication} \newtheorem*{def:fs closure}{Closure} \newtheorem*{def:atoms}{Atoms} \newtheorem*{def:rep function}{Representation function} @@ -312,8 +311,8 @@ \label{fig:model} \end{figure} % -\begin{def:satisfiability} -A model $\M = (\F, V)$ \emph{satisfies} a formula $\varphi$ at time instant $i$ is denoted by $\M,i \models \varphi$. Satisfiability of a formula $\varphi$ is defined inductively over the structure of $\varphi$: +\begin{def:satisfication} +A model $\M = (\F, V)$ \emph{satisfies} a formula $\varphi$ at time instant $i$ is denoted by $\M,i \models \varphi$. Satisfication of a formula $\varphi$ is defined inductively over the structure of $\varphi$: \begin{itemize} \item $\M,i \models p$ for $p \in \Prop \iff p \in V(i)$ \item $\M,i \models \neg \varphi \iff$ not $\M,i \models \varphi$ @@ -321,11 +320,11 @@ \item $\M,i \models \X \varphi \iff \M,i+1 \models \varphi$ \item $\M,i \models \varphi \U \psi \iff \exists{k \geq i}: \M,k \models \psi$ and $\forall{i \leq j < k}: \M,j \models\varphi$ \end{itemize} -\end{def:satisfiability} +\end{def:satisfication} % \noindent From the strict linear order of the LTL-frame accessibility relation follows that an LTL-formula $\varphi$ is \emph{satisfiable}, iff there exists a model $\M$ with $\M,0 \models \varphi$. -We clearly see, that atomic propositions, which are not contained within the formula $\varphi$ are redundant to the the definition of the satisfiability. By defining the \emph{vocabulary} of a formula, we dispose such irrelevant atomic proposition from the alphabet. +We clearly see, that atomic propositions, which are not contained within the formula $\varphi$ are redundant to the the definition of the satisfication. By defining the \emph{vocabulary} of a formula, we dispose such irrelevant atomic proposition from the alphabet. \begin{def:vocabulary} Let $\varphi$ be an LTL-formula over atomic propositions $\Prop$, we define the \emph{vocabulary} $Voc(\varphi)$ of $\varphi$ inductively: @@ -521,7 +520,7 @@ A more space-efficient strategy is the on-the-fly construction of the automaton during a depth-first search, short DFS. The DFS explores the product states of both automata incrementally, testing for cycles in each iteration. If the program does not satisfy a formula, an accepting cycle will occur and lead to termination of the search. In the case of a valid program, i.e., the program does meet the specification, no cycles will occur. In the latter case, such a strategy would inevitably explore the whole state space of the automata. \subsection{Two-state semantics} -A new interpretation for the infinite computation paths will help us in the incremental construction of automata. We separate the computation paths in two states by applying temporal reasoning; and we do so incrementally for each time instant. The two states resemble the satisfiability requirements for any time instant $i$ and its successor $i+1$. +A new interpretation for the infinite computation paths will help us in the incremental construction of automata. We separate the computation paths in two states by applying temporal reasoning; and we do so incrementally for each time instant. The two states resemble the satisfication requirements for any time instant $i$ and its successor $i+1$. \subsubsection{Example} Let $\varphi = a \U b$. We apply the two-state semantics on $\varphi$ and it follows: