# HG changeset patch # User Eugen Sawin # Date 1311103786 -7200 # Node ID c8b38fab3d489f8567fb43742a3caaa0303461c8 # Parent 7190dae7df066a7fe0f61ed108ff9f435b6cd9b0 Some more definitions. diff -r 7190dae7df06 -r c8b38fab3d48 slides/src/slides.tex --- a/slides/src/slides.tex Tue Jul 19 15:23:57 2011 +0200 +++ b/slides/src/slides.tex Tue Jul 19 21:29:46 2011 +0200 @@ -5,6 +5,7 @@ \newcommand{\M}{\mathcal{M}} \newcommand{\N}{\mathbb{N}_0} \newcommand{\F}{\mathcal{F}} +\newcommand{\Fs}{\mathbb{F}} \newcommand{\Prop}{\mathcal{P}} \newcommand{\A}{\mathcal{A}} \newcommand{\X}{\mathcal{X}} @@ -25,7 +26,7 @@ \newtheorem*{def:inf}{Infinite occurrences} \newtheorem*{def:automata acceptance}{Acceptance} \newtheorem*{def:automata language}{Recognised language} -\newtheorem*{def:general automata}{Generalised automata} +\newtheorem*{def:general automata}{Generalised automaton} \newtheorem*{def:general acceptance}{Acceptance} \newtheorem*{def:vocabulary}{Vocabulary} \newtheorem*{def:frames}{Frames} @@ -82,11 +83,11 @@ \begin{def:buechi automata} A non-deterministic B\"uchi automaton is a tuple $\A = (\Sigma, S, S_0, \Delta, F)$ with: \begin{itemize} -\item $\Sigma$ is a finite non-empty \emph{alphabet} -\item $S$ is a finite non-empty set of \emph{states} -\item $S_0 \subseteq S$ is the set of \emph{initial states} -\item $\Delta: S \times \Sigma \times S$ is a \emph{transition relation} -\item $F \subseteq S$ is the set of \emph{accepting states} +\item $\Sigma$ is a finite \emph{alphabet}. +\item $S$ is a finite set of \emph{states}. +\item $S_0 \subseteq S$ is the set of \emph{initial states}. +\item $\Delta: S \times \Sigma \times S$ is a \emph{transition relation}. +\item $F \subseteq S$ is the set of \emph{accepting states}. \end{itemize} \end{def:buechi automata} \end{frame} @@ -99,10 +100,10 @@ \begin{itemize} \item A run $\rho$ of $\A$ on an infinite word $w = a_0,a_1,...$ is a sequence $\rho = s_0,s_1,...$: \begin{itemize} -\item $s_0 \in S_0$ -\item $(s_i, a_i, s_{i+1}) \in \Delta$, for all $i \geq 0$ +\item $s_0 \in S_0$. +\item $(s_i, a_i, s_{i+1}) \in \Delta$, for all $i \geq 0$. \end{itemize} -\item Alternative view of a run $\rho$ as a function $\rho : \N \to S$, with $\rho(i) = s_i$ +\item Alternative view of a run $\rho$ as a function $\rho : \N \to S$, with $\rho(i) = s_i$. \end{itemize} \end{def:automata runs} \end{frame} @@ -114,7 +115,7 @@ Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $\A$: \begin{itemize} \item $\exists^\omega$ denotes the existential quantifier for infinitely many occurrences. -\item $inf(\rho) = \{s \in S \mid \exists^\omega{n \in \N}: \rho(n) = s\}$ +\item $inf(\rho) = \{s \in S \mid \exists^\omega{n \in \N}: \rho(n) = s\}$. \end{itemize} \end{def:inf} @@ -133,17 +134,49 @@ \begin{def:automata language} Let $\A = (\Sigma, S, S_0, \Delta, F)$ be an automaton: \begin{itemize} -\item Language $L_\omega(\A)$ \emph{recognised} by $\A$ is the set of all infinite words \emph{accepted} by $\A$ -\item Language $L$ is \emph{B\"uchi-recognisable} iff there is an automaton $\A$ with $L = L_\omega(\A)$ -\item The class of B\"uchi-recognisable languages corresponds to the class of $\omega$-regular languages +\item $L_\omega(\A) = \{w \in \Sigma^\omega \mid \A \text{ accepts } w\}$, we say $\A$ recognises language $L_\omega(\A)$. +\item Language $L$ is \emph{B\"uchi-recognisable} iff there is an automaton $\A$ with $L = L_\omega(\A)$. +\item The class of B\"uchi-recognisable languages corresponds to the class of $\omega$-regular languages. \end{itemize} \end{def:automata language} \end{frame} \begin{frame} +\frametitle{Generalised Automata} +\framesubtitle{Definition} +\begin{def:general automata} +A \emph{generalised B\"uchi automaton} is a tuple $\A = (\Sigma, S, S_0, \Delta, \{F_i\}_{i