# HG changeset patch # User Eugen Sawin # Date 1309299119 -7200 # Node ID ebda6a5fc738d547123ee1ca8548362feba7d0e3 # Parent 9e5a3c5efff7806e2f5fa38dfa2dcab64d3858f6 Nothing. diff -r 9e5a3c5efff7 -r ebda6a5fc738 paper/src/paper.tex --- a/paper/src/paper.tex Tue Jun 28 22:03:45 2011 +0200 +++ b/paper/src/paper.tex Wed Jun 29 00:11:59 2011 +0200 @@ -36,6 +36,8 @@ \newtheorem*{def:automata runs}{Runs} \newtheorem*{def:automata acceptance}{Acceptance} \newtheorem*{def:vocabulary}{Vocabulary} +\newtheorem*{def:models}{Models} +\newtheorem*{def:satisfiability}{Satisfiability} \theoremstyle{proposition} \newtheorem{prop:vocabulary sat}{Proposition} @@ -155,18 +157,21 @@ \end{def:automata acceptance} \section{Linear temporal logic} -\subsection*{Sytnax} +\subsection{Sytnax} Let $\mathcal{P}$ be the countable set of \emph{atomic propositions}. The \emph{alphabet} of the language $L_{LTL}(\mathcal{P})$ is $\mathcal{P} \cup \{\neg, \lor, X, U\}$. We define the $L_{LTL}(\mathcal{P})$-\emph{formulae} $\varphi$ using following productions: \[\varphi ::= p \in \mathcal{P} \,|\, \neg \varphi \,|\, \varphi \lor \varphi \,|\, X \varphi \,|\, \varphi U \varphi\] -\subsection*{Interpretation} +\subsection{Interpretation} The intuition should go as follows: $\neg$ and $\lor$ correspond to the Boolean \emph{negation} and \emph{disjunction}, the unary temporal operator $X$ reads as \emph{next} and the binary temporal operator $U$ reads as \emph{until}. LTL is interpreted over \emph{computation paths}, where a computation corrensponds to a model over a \emph{Kripke-frame} constructed by the order of natural numbers. -\subsection*{Semantics} +\subsection{Semantics} +\begin{def:models} A \emph{model} is a function $\M: \N \to 2^\mathcal{P}$ over \emph{frame} $\mathcal{F}$. The frame constitutes a linear order over $\N$, which corresponds to the linear progression of time from the \emph{present/past} into the \emph{future}. Therefore $\M(i)$ assigns a set of \emph{positive atomic propositions} to each state of time instant $i$. Intuitively we say $p \in \mathcal{P}$ is \emph{true} at time instant $i$ iff $p \in \M(i)$. +\end{def:models} +\begin{def:satisfiability} A model $\M$ \emph{satisfies} an LTL-formula $\varphi$ at time instant $i$ is denoted by $\M,i \models \varphi$. Satisfiability of a formula $\varphi$ is defined inductively over the structure of $\varphi$: \begin{itemize} \item $\M,i \models p$ for $p \in \mathcal{P}$ iff $p \in \M(i)$ @@ -175,7 +180,8 @@ \item $\M,i \models X \varphi$ iff $\M,i+1 \models \varphi$ \item $\M,i \models \varphi U \psi$ iff $\exists{k \geq i}: \M,k \models \psi$ and $\forall{i \leq j < k}: \M,j \models\varphi$ \end{itemize} -% +\end{def:satisfiability} + \begin{def:vocabulary} Let $\varphi$ be a LTL-formula over atomic propositions $\mathcal{P}$, we define the \emph{vocabulary} $Voc(\varphi)$ of $\varphi$ inductively: \begin{multicols}{2}