Layout and stuff.
authorEugen Sawin <sawine@me73.com>
Wed, 29 Jun 2011 18:39:07 +0200
changeset 19241e7ad6593c
parent 18 ebda6a5fc738
child 20 3402f14d907a
Layout and stuff.
paper/src/paper.tex
     1.1 --- a/paper/src/paper.tex	Wed Jun 29 00:11:59 2011 +0200
     1.2 +++ b/paper/src/paper.tex	Wed Jun 29 18:39:07 2011 +0200
     1.3 @@ -7,18 +7,24 @@
     1.4  \usepackage{algorithmic}
     1.5  \usepackage{multicol}
     1.6  %\usepackage{fullpage}
     1.7 +%\usepackage{a4wide}
     1.8 +\usepackage[left=3.9cm, right=3.9cm]{geometry}
     1.9  %\usepackage[T1]{fontenc}
    1.10  %\usepackage{arev}
    1.11  %\pagestyle{headings}
    1.12 +
    1.13  \renewcommand{\familydefault}{\sfdefault}
    1.14  \newcommand{\M}{\mathcal{M}}
    1.15  \newcommand{\N}{\mathbb{N}_0}
    1.16 +\newcommand{\F}{\mathcal{F}}
    1.17 +\newcommand{\Prop}{\mathcal{P}}
    1.18 +
    1.19  \title{\uppercase{\textbf{\Large{A}\large{lgorithmic} \Large{V}\large{erification of} \Large{R}\large{eactive} \Large{S}\large{ystems}}\\
    1.20  \tiny{Draft}
    1.21  }}
    1.22  \author{
    1.23 -\uppercase{{\small{E}\scriptsize{UGEN} \small{S}\scriptsize{AWIN}}\thanks{\texttt{sawine@informatik.uni-freiburg.de}}\\
    1.24 -{\em \small{U}\scriptsize{NIVERSITY OF} \small{F}\scriptsize{REIBURG}}\\
    1.25 +\uppercase{{\small{E}\scriptsize{UGEN} \small{S}\scriptsize{AWIN}}\thanks{\lowercase{\scriptsize{\texttt{sawine@informatik.uni-freiburg.de}}}}\\
    1.26 +{\em \small{U}\scriptsize{NIVERSITY OF} \small{F}\scriptsize{REIBURG}}\thanks{\tiny{Computer Science Department, Research Group for Foundations of Artificial Intelligence}}\\
    1.27  %{\em \small{C}\scriptsize{omputer} \small{S}\scriptsize{cience} \small{D}\scriptsize{epartment}}\\
    1.28  {\em \small{G}\scriptsize{ERMANY}}}\\
    1.29  %\texttt{\footnotesize{sawine@informatik.uni-freiburg.de}}
    1.30 @@ -36,6 +42,7 @@
    1.31  \newtheorem*{def:automata runs}{Runs}
    1.32  \newtheorem*{def:automata acceptance}{Acceptance}
    1.33  \newtheorem*{def:vocabulary}{Vocabulary}
    1.34 +\newtheorem*{def:frames}{Frames}
    1.35  \newtheorem*{def:models}{Models}
    1.36  \newtheorem*{def:satisfiability}{Satisfiability}
    1.37  
    1.38 @@ -143,7 +150,7 @@
    1.39  
    1.40  A deterministic B\"uchi automaton is a specialisation where the \emph{transition relation} $\Delta$ is a \emph{transition function} $\delta: S \times \Sigma \to S$ and the set $S_0$ of \emph{initial states} contains only a single state $s_0$.
    1.41  
    1.42 -Within this text \emph{automata/automaton} will refer to non-deterministic B\"uchi automata/automaton, unless otherwise noted. 
    1.43 +Within this text \emph{automaton} will refer to the non-deterministic B\"uchi automaton, unless otherwise noted. 
    1.44  \end{def:buechi automata}
    1.45  
    1.46  \begin{def:automata runs}
    1.47 @@ -157,9 +164,9 @@
    1.48  \end{def:automata acceptance}
    1.49  
    1.50  \section{Linear temporal logic}
    1.51 -\subsection{Sytnax}
    1.52 -Let $\mathcal{P}$ be the countable set of \emph{atomic propositions}. The \emph{alphabet} of the language $L_{LTL}(\mathcal{P})$ is $\mathcal{P} \cup \{\neg, \lor, X, U\}$. We define the $L_{LTL}(\mathcal{P})$-\emph{formulae} $\varphi$ using following productions:
    1.53 -\[\varphi ::= p \in \mathcal{P} \,|\, \neg \varphi \,|\, \varphi \lor \varphi \,|\, X \varphi \,|\, \varphi U \varphi\]
    1.54 +\subsection{Syntax}
    1.55 +Let $\Prop$ be the countable set of \emph{atomic propositions}. The \emph{alphabet} of the language $L_{LTL}(\Prop)$ is $\Prop \cup \{\neg, \lor, X, U\}$. We define the $L_{LTL}(\Prop)$-\emph{formulae} $\varphi$ using following productions:
    1.56 +\[\varphi ::= p \in \Prop \,|\, \neg \varphi \,|\, \varphi \lor \varphi \,|\, X \varphi \,|\, \varphi U \varphi\]
    1.57  
    1.58  \subsection{Interpretation}
    1.59  The intuition should go as follows: $\neg$ and $\lor$ correspond to the Boolean \emph{negation} and \emph{disjunction}, the unary temporal operator $X$ reads as \emph{next} and the binary temporal operator $U$ reads as \emph{until}.
    1.60 @@ -167,14 +174,19 @@
    1.61  LTL is interpreted over \emph{computation paths}, where a computation corrensponds to a model over a \emph{Kripke-frame} constructed by the order of natural numbers.
    1.62  
    1.63  \subsection{Semantics}
    1.64 +\begin{def:frames}
    1.65 +A LTL-\emph{frame} is a tuple $\F = (S, R)$, where $S = \{s_i \mid i \in \N\}$ is the set of states and $R = \{(s_i, s_{i+1}) \mid i \in \N\}$ the set of accessibility relations. Hence $S$ is an isomorphism of $\N$ and $R$ an isomorphism of the strict linear order $(\N, <)$, which corresponds to the linear progression of time. 
    1.66 +\end{def:frames}
    1.67 +
    1.68  \begin{def:models}
    1.69 -A \emph{model} is a function $\M: \N \to 2^\mathcal{P}$ over \emph{frame} $\mathcal{F}$. The frame constitutes a linear order over $\N$, which corresponds to the linear progression of time from the \emph{present/past} into the \emph{future}. Therefore $\M(i)$ assigns a set of \emph{positive atomic propositions} to each state of time instant $i$. Intuitively we say $p \in \mathcal{P}$ is \emph{true} at time instant $i$ iff $p \in \M(i)$.
    1.70 +A LTL-\emph{model} is a tuple $\M = (\F, V)$, where $\F$ is a \emph{frame} and $V: S \to 2^\Prop$ a \emph{valuation function}. Intuitively we say $p \in \Prop$ is \emph{true} at time instant $i$ iff $p \in V(i)$. 
    1.71 +%A \emph{model} is a function $\M: \N \to 2^\Prop$ over \emph{frame} $\F$. The frame constitutes a linear order over $\N$, which corresponds to the linear progression of time from the \emph{present/past} into the \emph{future}. Therefore $\M(i)$ assigns a set of \emph{positive atomic propositions} to each state of time instant $i$. Intuitively we say $p \in \Prop$ is \emph{true} at time instant $i$ iff $p \in \M(i)$.
    1.72  \end{def:models}
    1.73  
    1.74  \begin{def:satisfiability}
    1.75 -A model $\M$ \emph{satisfies} an LTL-formula $\varphi$ at time instant $i$ is denoted by $\M,i \models \varphi$. Satisfiability of a formula $\varphi$ is defined inductively over the structure of $\varphi$:
    1.76 +A model $\M = (\F, V)$ \emph{satisfies} a formula $\varphi$ at time instant $i$ is denoted by $\M,i \models \varphi$. Satisfiability of a formula $\varphi$ is defined inductively over the structure of $\varphi$:
    1.77  \begin{itemize}
    1.78 -\item $\M,i \models p$ for $p \in \mathcal{P}$ iff $p \in \M(i)$
    1.79 +\item $\M,i \models p$ for $p \in \Prop$ iff $p \in V(i)$
    1.80  \item $\M,i \models \neg \varphi$ iff not $\M,i \models \varphi$
    1.81  \item $\M,i \models \varphi \lor \psi$ iff $\M,i \models \varphi$ or $\M,i \models \psi$
    1.82  \item $\M,i \models X \varphi$ iff $\M,i+1 \models \varphi$
    1.83 @@ -183,10 +195,10 @@
    1.84  \end{def:satisfiability}
    1.85  
    1.86  \begin{def:vocabulary}
    1.87 -Let $\varphi$ be a LTL-formula over atomic propositions $\mathcal{P}$, we define the \emph{vocabulary} $Voc(\varphi)$ of $\varphi$ inductively:
    1.88 +Let $\varphi$ be a LTL-formula over atomic propositions $\Prop$, we define the \emph{vocabulary} $Voc(\varphi)$ of $\varphi$ inductively:
    1.89  \begin{multicols}{2}
    1.90  \begin{itemize}
    1.91 -\item $Voc(p) = \{p\}$ for $p \in \mathcal{P}$
    1.92 +\item $Voc(p) = \{p\}$ for $p \in \Prop$
    1.93  \item $Voc(\neg \varphi) = Voc(\varphi)$
    1.94  \item $Voc(\varphi \lor \psi) = Voc(\varphi) \cup Voc(\psi)$
    1.95  \item $Voc(X \varphi) = Voc(\varphi)$
    1.96 @@ -203,13 +215,13 @@
    1.97  \[\forall{i \in \N}: \M,i \models \varphi \iff \M_{Voc(\varphi)},i \models \varphi\] 
    1.98  \end{prop:vocabulary sat}
    1.99  %
   1.100 -\subsection*{Derived connectives}
   1.101 +\subsection{Derived connectives}
   1.102  For a more convenient description of system specifications we present some derived symbols to be used in LTL-formulae. At first we introduce the notion of \emph{truth} and \emph{falsity} using constants $\top$ and $\bot$. Then we expand our set of connectives with the Boolean \emph{and}, \emph{implication} and \emph{equivalence}. And at last we derive the commonly used modal operators \emph{eventually} and \emph{henceforth}. 
   1.103  
   1.104 -Let $\varphi$ and $\psi$ be $L_{LTL}(\mathcal{P})$-formulae:
   1.105 +Let $\varphi$ and $\psi$ be $L_{LTL}(\Prop)$-formulae:
   1.106  \begin{multicols}{2}
   1.107  \begin{itemize}
   1.108 -\item $\top \equiv p \lor \neg p$ for $p \in \mathcal{P}$
   1.109 +\item $\top \equiv p \lor \neg p$ for $p \in \Prop$
   1.110  \item $\bot \equiv \neg \top$
   1.111  \item $\varphi \land \psi \equiv \neg (\neg \varphi \lor \neg \psi)$
   1.112  \item $\varphi \rightarrow \psi \equiv \neg \varphi \lor \psi$
   1.113 @@ -225,8 +237,15 @@
   1.114  \item $\M,i \models \Box \varphi$ iff $\forall{k \geq i}: \M,k \models \varphi$
   1.115  \end{itemize}
   1.116  \end{multicols}
   1.117 +
   1.118 +With the additional derived connectives we get the following $L_{LTL}(\Prop)$-formulae productions:
   1.119 +\[\varphi ::= p \in \Prop \,|\, \neg \varphi \,|\, \varphi \lor \varphi \,|\, \varphi \land \varphi \,|\, X \varphi \,|\, \varphi U \varphi \,|\, \varphi \rightarrow \varphi \,|\, \varphi \leftrightarrow \varphi \,|\, \Diamond \varphi \,|\, \Box \varphi\]
   1.120 +
   1.121  \section{Model checking}
   1.122  
   1.123 +
   1.124 +\section{On-the-fly methods}
   1.125 +
   1.126  \begin{thebibliography}{99}
   1.127  \bibitem{ref:ltl&büchi} 
   1.128  \uppercase{M{\footnotesize adhavan} M{\footnotesize ukund}.}
   1.129 @@ -239,6 +258,11 @@
   1.130  {\em Handbook of Modal Logic (Studies in Logic and Practical Reasoning)}.
   1.131  3rd Edition, Elsevier, Amsterdam, 2007.
   1.132  
   1.133 +\bibitem{ref:alternating verification} 
   1.134 +\uppercase{M{\footnotesize oshe} Y. V{\footnotesize ardi}.}
   1.135 +{\em Alternating Automata and Program Verification}.
   1.136 +Computer Science Today, Volume 1000 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1995.
   1.137 +
   1.138  \bibitem{ref:infpaths}
   1.139  \uppercase{P{\footnotesize ierre} W{\footnotesize olper}, 
   1.140  M{\footnotesize oshe} Y. V{\footnotesize ardi and}