Multicolumn lists.
authorEugen Sawin <sawine@me73.com>
Tue, 28 Jun 2011 14:45:02 +0200
changeset 158a3d0605adf5
parent 14 68fff3a1453e
child 16 23c4bc2af0b1
Multicolumn lists.
paper/src/paper.tex
     1.1 --- a/paper/src/paper.tex	Tue Jun 28 00:16:13 2011 +0200
     1.2 +++ b/paper/src/paper.tex	Tue Jun 28 14:45:02 2011 +0200
     1.3 @@ -5,6 +5,7 @@
     1.4  \usepackage{typearea}
     1.5  \usepackage{algorithm}
     1.6  \usepackage{algorithmic}
     1.7 +\usepackage{multicol}
     1.8  %\usepackage{fullpage}
     1.9  %\usepackage[T1]{fontenc}
    1.10  %\usepackage{arev}
    1.11 @@ -23,7 +24,7 @@
    1.12  }
    1.13  \date{\textsc{\hfill}}
    1.14  
    1.15 -\theoremstyle{definition} %plain, definition, remark
    1.16 +\theoremstyle{definition} %plain, definition, remark, proposition, proof, corrolary
    1.17  \newtheorem*{def:finite words}{Finite words}
    1.18  \newtheorem*{def:infinite words}{Infinite words}
    1.19  \newtheorem*{def:regular languages}{Regular languages}
    1.20 @@ -35,7 +36,9 @@
    1.21  \newtheorem*{def:automata acceptance}{Acceptance}
    1.22  \newtheorem*{def:vocabulary}{Vocabulary}
    1.23  
    1.24 +\theoremstyle{proposition}
    1.25  \newtheorem{prop:vocabulary sat}{Proposition}
    1.26 +
    1.27  \begin{document}
    1.28  
    1.29  \maketitle
    1.30 @@ -94,15 +97,18 @@
    1.31  
    1.32  \begin{def:regular languages}
    1.33  The class of regular languages is defined recursively over an alphabet $\Sigma$:
    1.34 +\begin{multicols}{2}
    1.35  \begin{itemize}
    1.36  \item $\emptyset$ is regular
    1.37  \item $\{\varepsilon\}$ is regular
    1.38  \item $\forall_{a \in \Sigma}:\{a\}$ is regular
    1.39  \end{itemize}
    1.40 +\end{multicols}
    1.41  \end{def:regular languages}
    1.42  
    1.43  \begin{def:regular languages closure}
    1.44  Let $L_{R_1}, L_{R_2} \in \Sigma^*$ be regular. The class of regular languages is closed under following operations:
    1.45 +\begin{multicols}{2}
    1.46  \begin{itemize}
    1.47  \item $L_{R_1}^*$
    1.48  \item $L_{R_1} \circ L_{R_2}$
    1.49 @@ -110,6 +116,7 @@
    1.50  \item $L_{R_1} \cap L_{R_2}$
    1.51  \item $\overline{L}_{R_1}$ and therefore $L_{R_1} - L_{R_2}$
    1.52  \end{itemize}
    1.53 +\end{multicols}
    1.54  \end{def:regular languages closure}
    1.55  
    1.56  \begin{def:infinite words}
    1.57 @@ -131,7 +138,7 @@
    1.58  
    1.59  \section{B\"uchi automata}
    1.60  \begin{def:buechi automata}
    1.61 -A non-deterministic B\"uchi automaton is a tuple $A = (\Sigma, S, S_0, \Delta, F)$, where $\Sigma$ is a finite non-empty \emph{alphabet}, $S$ is a finite non-empty set of \emph{states}, $S_0 \subseteq S$ is the set of \emph{initial states}, $F \subseteq S$ is the set of \emph{accepting states} and $\Delta: S \times \Sigma \times S$ is a \emph{transition relation}. When suitable we will use the arrow notation for the transitions, where $s \xrightarrow{a} s' \iff (s, a, s') \in \Delta$.
    1.62 +A non-deterministic B\"uchi automaton is a tuple $A = (\Sigma, S, S_0, \Delta, F)$, where $\Sigma$ is a finite non-empty \emph{alphabet}, $S$ is a finite non-empty set of \emph{states}, $S_0 \subseteq S$ is the set of \emph{initial states}, $F \subseteq S$ is the set of \emph{accepting states} and $\Delta: S \times \Sigma \times S$ is a \emph{transition relation}. When suitable we will use the arrow notation for the transitions, where $s \xrightarrow{a} s'$ iff $(s, a, s') \in \Delta$.
    1.63  
    1.64  A deterministic B\"uchi automaton is a specialisation where the \emph{transition relation} $\Delta$ is a \emph{transition function} $\delta: S \times \Sigma \to S$ and the set $S_0$ of \emph{initial states} contains only a single state $s_0$.
    1.65  
    1.66 @@ -145,7 +152,7 @@
    1.67  \begin{def:automata acceptance}
    1.68  Let $A = (\Sigma, S, S_0, \Delta, F)$ be an automaton and let $\rho$ be a run of $A$, we define $inf(\rho) = \{s \in S \mid \exists^\omega{n \in \mathbb{N}_0}: \rho(n) = s\}$, where $\exists^\omega$ denotes the existential quantifier for infinitely many occurances, i.e., $s$ occurs infinitely often in $\rho$.
    1.69  
    1.70 -The run $\rho$ is \emph{accepting}, iff $inf(\rho) \cap F \neq \emptyset$, i.e., there exists an \emph{accepting state} which occurs infinitely often in the run $\rho$. The automaton $A$ \emph{accepts} an input word $w$, iff there exists a run $\rho$ of $A$ on $w$, such that $\rho$ is \emph{accepting}. The language $L_\omega(A)$ recognised by automaton $A$ is the set of all infinite words accepted by $A$.
    1.71 +The run $\rho$ is \emph{accepting} iff $inf(\rho) \cap F \neq \emptyset$, i.e., there exists an \emph{accepting state} which occurs infinitely often in the run $\rho$. The automaton $A$ \emph{accepts} an input word $w$, iff there exists a run $\rho$ of $A$ on $w$, such that $\rho$ is \emph{accepting}. The language $L_\omega(A)$ recognised by automaton $A$ is the set of all infinite words accepted by $A$.
    1.72  \end{def:automata acceptance}
    1.73  
    1.74  \section{Linear temporal logic}
    1.75 @@ -159,7 +166,7 @@
    1.76  LTL is interpreted over \emph{computation paths}, where a computation corrensponds to a model over a \emph{Kripke-frame} constructed by the order of natural numbers.
    1.77  
    1.78  \subsection*{Semantics}
    1.79 -A \emph{model} is a function $M: \mathbb{N}_0 \to 2^P$ over \emph{frame} $F$. The frame constitutes a linear order over $\mathbb{N}_0$, which corresponds to the linear temporal progression from \emph{now/before} to \emph{later}. Therefore $M(i)$ assigns a set of \emph{positive atomic propositions} to each state of time instant $i$. Intuitively we say $p \in P$ is \emph{true} at time instant $i$, iff $p \in M(i)$.
    1.80 +A \emph{model} is a function $M: \mathbb{N}_0 \to 2^P$ over \emph{frame} $F$. The frame constitutes a linear order over $\mathbb{N}_0$, which corresponds to the linear progression of time from the \emph{present/past} into the \emph{future}. Therefore $M(i)$ assigns a set of \emph{positive atomic propositions} to each state of time instant $i$. Intuitively we say $p \in P$ is \emph{true} at time instant $i$ iff $p \in M(i)$.
    1.81  
    1.82  A model $M$ \emph{satisfies} an LTL-formula $\varphi$ at time instant $i$ is denoted by $M,i \models \varphi$. Satisfaction of a formula $\varphi$ is defined inductively over the structure of $\varphi$:
    1.83  \begin{itemize}
    1.84 @@ -172,6 +179,7 @@
    1.85  
    1.86  \begin{def:vocabulary}
    1.87  Let $\varphi$ be a LTL-formula over atomic propositions $P$, we define the \emph{vocabulary} $Voc(\varphi)$ of $\varphi$ inductively:
    1.88 +\begin{multicols}{2}
    1.89  \begin{itemize}
    1.90  \item $Voc(p) = \{p\}$ for $p \in P$
    1.91  \item $Voc(\neg \varphi) = Voc(\varphi)$
    1.92 @@ -179,16 +187,33 @@
    1.93  \item $Voc(X \varphi) = Voc(\varphi)$
    1.94  \item $Voc(\varphi U \psi) = Voc(\varphi) \cup Voc(\psi)$
    1.95  \end{itemize}
    1.96 +\end{multicols}
    1.97 +
    1.98  Let $M$ be a model and $\varphi$ a LTL-formula, we define model $M_{Voc(\varphi)}$:
    1.99 -\[\forall{i \in \mathbb{N}}: M_{Voc(\varphi)} = M(i) \cap Voc(\varphi)\]
   1.100 +\[\forall{i \in \mathbb{N}_0}: M_{Voc(\varphi)} = M(i) \cap Voc(\varphi)\]
   1.101  \end{def:vocabulary}
   1.102  
   1.103  \begin{prop:vocabulary sat}
   1.104  Let $M$ be a model and $\varphi$ a LTL-formula, then following holds:
   1.105 -\[\forall{i \in \mathbb{N}}: M,i \models \varphi \iff M_{Voc(\varphi)},i \models \varphi\] 
   1.106 +\[\forall{i \in \mathbb{N}_0}: M,i \models \varphi \iff M_{Voc(\varphi)},i \models \varphi\] 
   1.107  \end{prop:vocabulary sat}
   1.108  
   1.109 +\subsection*{Derived connectives}
   1.110 +For a more convenient description of system specifications we present some derived symbols to be used in LTL-formulae. At first we introduce the notion of \emph{truth} and \emph{falsity} using constants $\top$ and $\bot$. Then we expand our set of connectives with the Boolean \emph{and}, \emph{implication} and \emph{equivalence}. And at last we derive the commonly used modal operators \emph{eventually} and \emph{henceforth}. Let $\varphi$ and $\psi$ be $L_{LTL}(P)$-formulae:
   1.111 +\begin{multicols}{2}
   1.112 +\begin{itemize}
   1.113 +\item $\top \equiv p \lor \neg p$ for $p \in P$
   1.114 +\item $\bot \equiv \neg \top$
   1.115 +\item $\varphi \land \psi \equiv \neg (\neg \varphi \lor \neg \psi)$
   1.116 +\item $\varphi \rightarrow \psi \equiv \neg \varphi \lor \psi$
   1.117 +\item $\varphi \leftrightarrow \psi \equiv (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$
   1.118 +\item $\Diamond \varphi \equiv \top U \varphi$
   1.119 +\item $\Box \varphi \equiv \neg \Diamond \neg \varphi$
   1.120 +\end{itemize}
   1.121 +\end{multicols}
   1.122 +
   1.123  \section{Model checking}
   1.124 +
   1.125  \begin{thebibliography}{99}
   1.126  \bibitem{ref:ltl&büchi} 
   1.127  \uppercase{M{\footnotesize adhavan} M{\footnotesize ukund}.}