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Abstract—The process industry has always been faced with
the difficult task of determining the required integrity of safe-
guarding systems such as Safety Instrumented Systems (SISs). The
ANSI/ISA S84.01-1996 and IEC 61508 safety standards provide
guidelines for the design, installation, operation, maintenance, and
test of SIS. However, in the field, there is a considerable lack of un-
derstanding of how to apply these standards to both determine and
achieve the required safety integrity level (SIL) for SIS. Moreover,
in certain situations, the SIL evaluation is further complicated due
to the uncertainty on reliability parameters of SIS components.
This paper proposes a new approach to evaluate the “confidence”
of the SIL determination when there is an uncertainty about
failure rates of SIS components. This approach is based on the use
of failure rates and fuzzy probabilities to evaluate the SIS failure
probability on demand and the SIL of the SIS. Furthermore, we
provide guidance on reducing the SIL uncertainty based on fuzzy
probabilistic importance measures.

Index Terms—Failure rates, fuzzy probabilistic importance mea-
sure, fuzzy probabilities, safety instrumented systems (SISs), safety
integrity level (SIL), uncertainty.

I. INTRODUCTION

THE process industry tends to be technically complex and
has the potential to inflict serious harm to persons and

property if the trip cannot avoid harm or during a spurious trip
(i.e., the safety function is carried out without a demand from
the process). In spite of the application of a wide variety of safe-
guarding measures, many accidents still happen. Experiences
gained from these accidents have led to the application of a va-
riety of technical and non-technical layers of protection, such
as safety instrumented systems (SISs). The SIS consists of in-
strumentation or controls that are implemented for the purpose
of mitigating a risk or bringing the process to a safe state in the
case of a process failure. Risk in process industry is defined as
a measure of human injury, environmental damage or economic
loss in terms of both the incident likelihood and the magnitude
of the injury, damage, or loss [1]. A SIS is used for any process
in which a process hazards analysis (PHA) has determined that
the mechanical integrity of the process equipment, the process
control, and other protective equipments are insufficient to mit-
igate the potential risk.
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The ANSI/ISA S84.01-1996 [2] and IEC 61508 [3] safety
standards provide guidelines for the design, installation, opera-
tion, maintenance, and test of SIS. However, in the field there is
a considerable lack of understanding of how to apply these stan-
dards to both determine and achieve the required SIL. Thus, de-
termining SIL for a SIS and its validation are very important for
compliance with the ANSI/ISA S84.01-1996 [2] and IEC 61508
[3] standards. The SIL of a SIS is defined by its probability to
fail on demand (PFD). The PFD represents the probability that
the SIS will fail such that it cannot respond to a potentially dan-
gerous condition. is a term used to describe the average
probability of failure on demand. It depends on the period of
exploitation of SIS equipments. will not reach a steady
state value if any periodic inspection, test, and repair are done
[4]. According to safety standards [2], [3] is an appro-
priate metric for measuring the effectiveness of a SIS if it is as-
sumed that the potentially dangerous condition is independent
from equipment failures in the SIS.

In the process industry, the operating conditions and environ-
ments can change for the same SIS component. The most desir-
able information is to have sufficient plant specific data about
component failures to evaluate their failure rates. Due to the
lower solicitation of SIS in plant, SIS components have not been
operating long enough to provide statistical valid failure data,
and for new plant it is not possible to collect in-house failure
data [5], [6]. Laboratory data and generic data are often used to
provide failure data of SIS components [4], [7], [8]. Point values
from these data origins are generally used to obtain an estima-
tion of the failure rates of SIS components.

However, measuring and collecting failure data have uncer-
tainty associated with them, and borrowing data from laboratory
and generic data sources involves uncertainty as well. As men-
tioned by Kletz [9], failure data can deviate by a factor of 3 or 4,
and a factor of 10 is not unusual. Wang et al. [5] discussed the
impact of data uncertainty in determining the PFD of SIS. How-
ever, they do not propose a methodology to treat this problem.
They just underlined that more work is needed to examine and
justify the uncertainty about determining the PFD of SIS in these
cases.

The probabilistic approaches combined with Monte Carlo
simulation [3], [10]–[14] which evaluate the PFD of SIS from
the failure probabilities of its components might be inappro-
priate, since most of the available failure rates data are point
values without information about the probability distributions
of theses failure data. Some reliability databases [15]–[17]
provide upper bounds, lower bounds, and error factors of
failure rate data for safety components. Fuzzy methods can use
advantageously these uncertainty parameters to evaluate the
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failure rates of components, and then to determine the failure
probabilities of SIS components and the PFD of SIS.

The purpose of this paper is to present a new approach to
evaluate the “confidence” of the SIL determination, when there
is an uncertainty about failure rates of SIS components. This
approach is based on the use of failure rates and fuzzy proba-
bilities to evaluate the fuzzy SIS PFD (SIS probability to fail
on demand), and the SIL of the SIS. Furthermore, we provide
guidance on reducing the uncertainty of determining SIL based
on fuzzy probabilistic importance measures which are used to
identify the SIS critical components. Then we modify the SIS
configuration for reducing the SIL uncertainty accordingly to
the critical components.

This paper is organized as follows. Section II briefly describes
the procedure to achieve the safety target level of the process,
and reviews the risk analysis techniques that can be used to
comply with ANSI/ISA S84.01-1996 [2] and IEC 61508 [3]
safety standards. In Section III, we introduce the fuzzy proba-
bilistic approach to determine the SIL of the SIS and evaluate the
SIL uncertainty. Moreover, the fuzzy probabilistic importance
measure to reduce uncertainty is presented. Section IV con-
cerns an example from the technical report ISA-TR84.00.02-
2002 [11] which illustrates the use of the proposed approach and
compares it to the conventional probabilistic approach. Then,
the reduction of the SIL uncertainty is achieved by computing
the fuzzy probabilistic importance measures and modifying the
configuration of the SIS critical components accordingly. Fi-
nally, some concluding remarks and perspectives are given in
Section V.

II. PROCEDURE TO ACHIEVE THE SAFETY TARGET LEVEL OF

THE PROCESS

This section focuses on qualitative and quantitative tech-
niques that can be used to evaluate the risk associated to a
process. After the risk has been evaluated, we have to identify
the necessary safety instrumented function (SIF) (i.e., a func-
tion that is a single set of actions that protects against a single
specific risk). Then we have to implement it on a SIS in order to
achieve the desired safety level for the process, and verify that
the SIS configuration meet the required SIL. All these steps are
required in order to comply with the ANSI/ISA S84.01-1996
[2] and IEC 61508 [3] standards.

A. Performance-Based Safety Standards

During the last years, great emphasis has been placed on im-
proving technological risk management in the process industry.
Process industry refers to those processes involved, but not lim-
ited to the production, generation, manufacture, treatment of
oil, gas, wood, metals, food, plastics, petrochemicals, chemi-
cals, steam, electric power, pharmaceutical, and waste material.
These efforts have resulted particularly in the development of
two performance-based safety standards from the Instrument
Society of America (ISA) ANSI/ISA S84.01-1996 [2] and the
International Electrotechnical Commission (IEC) IEC 61508
[3].

TABLE I
DEFINITION OF SIL FOR LOW AND HIGH DEMAND MODES

B. Safety Instrumented System (SIS)

The SIS is a system composed of sensors, logic solver and
final elements for the purpose of taking the process to a safe state
when predetermined conditions are violated. The safety perfor-
mance of the SIS is defined in terms of SIL, which is defined by
its . The value is obtained by combining the
average failure probabilities of system components. This com-
bination is a function of the SIS configuration, the proof test in-
terval, the common causes failures, and the inspection and main-
tenance policies. The ANSI/ISA S84.01-1996 [2], IEC 61508
[3], and ISA-TR84.00.02-2002 [11] recommend several tech-
niques to determine the value. For safety functions with
a low demand rate (for example anti-lock braking), and safety
functions with a high demand rate or operate continuously (for
example normal braking), the standards recommend values pre-
sented in Table I. In the next section, we will use these PFD
values for the SIL evaluation.

C. Compliance With ANSI/ISA S84.01-1996 and IEC 61508
Standards

The overall objective of these standards is to identify the re-
quired safety functions, establish their SIL and implement them
onaSIS in order toachieve thedesiredsafety level for theprocess.
The basic steps required to comply with are the following.

• Identify the safety target level of the process;
• Evaluate the hazardous events that pose a risk higher than

the safety target level;
• Determine the safety functions that must be implemented

on a SIS to achieve the safety target level;
• Implement the safety functions on a SIS and evaluate its

SIL;
• Install, test, and commission the SIS;
• Verify that the installed SIS does reduce the process risk to

satisfy the safety target level.
The standards [2], [3] offer three methods of determining SIL
requirements:

• qualitative methods;
• semi-quantitative methods;
• quantitative methods.
1) Qualitative Methods: In qualitative methods, the risk con-

cept of likelihood and consequence is used even though no ex-
plicit quantification is required. There are several techniques
published in the literature [2], [3], [11]. The risk graph method
is the widely used. It provides a SIL correlation based on the
following four factors [3]:

• consequence ( );
• frequency and exposure time ( );
• possibility of avoiding the hazardous event ( );
• probability of the unwanted occurrence ( ).
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Fig. 1. Example risk graph.

This method is a qualitative technique that requires tools to be
developed to ensure that the four parameters listed above are
properly chosen. It focuses most of the evaluation on an indi-
vidual person’s risk. The four factors are evaluated from the
point of view of a theoretical person being in the incident impact
zone. The probability of the unwanted occurrence is based on
the likelihood of the event, which should be evaluated without
taking into account any existing SIS. If a frequency is involved
in the evaluation of risk graph, the outcome is expressed
as well in terms of a frequency or an expected frequency. For
this method, the likelihood and consequences are determined
by considering the independent protection layers during the as-
sessment. Independence of protection layers can be guaranteed
if the performance is unaffected by the failure of another pro-
tection layer or by the conditions that caused another protection
layer to fail. The protection layers must also be independent of
the initiating cause of failure. Once these factors are determined,
the risk graph is used to determine the minimum risk reduction
level and associated SIL. An example risk graph is shown in
Fig. 1.

2) Semi-Quantitative Methods: A semi-quantitative ap-
proach can be used to assess process risk [10], [18]. It allows
a traceable path of how the accident scenario develops and
comprises the following steps:

• identify the accident scenarios;
• identify the basic events that comprise each accident sce-

nario. Basic events that involved failure or success of safety
systems are also taken into account;

• assign a typical likelihood of occurrence for each event;
• estimate the likelihood (approximate range of occurrence)

of an accident scenario;
• perform consequence analysis to understand the severity of

the accident scenario consequences;
• assign the rate for the severity of the consequences;

• evaluate the risk as a combination of the likelihood and the
consequences.

3) Quantitative Methods: The quantitative approach to SIL
assignment is the most rigorous technique to use. The SIL is
assigned by determining the process demand or incident like-
lihood quantitatively. The potential causes of the incident are
modeled using a quantitative risk assessment technique [11],
[12]. The quantitative technique is often used when there is a
very limited information database about the process. So, the
quantitative determination of likelihood is extremely difficult.
The method does require a thorough understanding of the poten-
tial causes of the event and an estimated probability of each po-
tential cause. The technical report ISA-TR84.00.02-2002 [11]
presents three quantitative methods:

• simplified equations;
• fault tree analysis (FTA);
• Markov modeling.

The simplified equation technique involves determining the av-
erage failure probability of the field sensors (FS), logic solvers
(LS), and final elements (FE). Once the individual failure prob-
abilities for each input, logic solver and output are known, these
probabilities are summed to compute the SIS PFD.

Fault trees analysis can be actually used as either a quantita-
tive or a semi-quantitative method for modeling the SIS. Fault
tree symbols are used to show the failure logic of the SIS. The
graphical technique of fault tree analysis allows easy visualiza-
tion of failure paths. Since the actual failure logic is modeled,
diverse technologies, complex voting strategies and interdepen-
dent relationships can be evaluated. However, fault tree analysis
is not suitable to SIS that have time dependent failures. There-
fore, Markov approaches can be used to model the SIS and eval-
uate the SIS PFD.

4) Discussion: The qualitative technique is simple and the
limited resources required for its execution make it a useful
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screening tool to identify safety areas concerned. The drawback
is the dependence on the expertise level of the practitioners. Par-
ticularly, consistency may be a problem. The semi-quantitative
technique does provide a more systematic approach to assess
risk than qualitative methods. The quantitative technique is re-
source intensive but does provide benefits that are not provided
in the other two approaches. The most significant disadvantage
of this technique is the need of credible data. In this work, we
consider some imprecise information about failure rates of SIS
components. Also, it becomes interesting to investigate the use
of a quantitative method like FTA, with an integration of the un-
certainty involving a fuzzy set approach.

III. DETERMINING SIL VIA A FUZZY PROBABILISTIC FAULT

TREE ANALYSIS

To determine SIL, the technical report ISA-TR84.00.02-2002
[11] recommends the use of fault tree analysis in SIL2 and SIL3
SIS applications. The conventional fault tree analysis which is
based on the probabilistic approach has been used extensively
in the past [12]–[14]. However, in order to use upper and lower
bounds of failure probabilities of SIS components provided by
some reliability databases [15]–[17], we propose to use fuzzy
fault trees which provide an interesting tool for representing and
analyzing these failure probabilities.

The pioneering work on fuzzy fault tree analysis belongs to
Tanaka et al. [19]. They treated basic events probabilities as
trapezoidal fuzzy numbers and applied the fuzzy extension prin-
ciple to compute the top event probability. Singer [20] analyzed
fuzzy reliability by using fuzzy numbers. He consid-
ered the relative frequencies of basic events as fuzzy numbers
and used possibility instead of probability measures. However,
these approaches cannot be applied to a fault tree with repeated
events. In order to deal with repeated basic events, Soman and
Misra [21] provided a simple method for fuzzy FTA based on
the -cut method, also known as resolution identity. Other re-
sults on fuzzy FTA are reported in [22]–[27].

Our approach is to quantitatively evaluate the performances
of a SIS. But, as mentioned previously, studies are under uncer-
tainty. The goal of the paper is to take into account these uncer-
tainties in the evaluation. So, we investigate the use of fuzzy set
theory to determine the SIL of the SIS.

A. Fuzzy Numbers

Let be a continuous variable restricted to a distribution func-
tion , which satisfy the following assumptions:

• is a piecewise continuous;
• is a convex fuzzy set;
• is a normal fuzzy set.

A fuzzy set which satisfies these requirements is called a fuzzy
number.

Obviously, computational efficiency is important in any prac-
tical application of fuzzy numbers. But, the operation implied
in the extension principle requires extensive computation. From
the previous studies made by Kaufman and Gupta [28], it is
shown that the computational effort with operation on fuzzy
numbers can be reduced by composing the membership func-
tions into -levels and by conducting mathematical operations
on these intervals [29], [30].

Fig. 2. Bounds points for �-level set interval of � (x).

For any fuzzy number which has the membership function
, an interval bounded by two points at each -level

can be obtained using the -cut method. The symbols
and have been used in this paper to represent the

left-end-point and right-end-point of this interval.

As it is shown in Fig. 2, we can express a fuzzy number ,
using the following form:

The wider the support of the membership function, the higher
the uncertainty. The higher the value of , the higher the con-
fidence in the parameter represented by the fuzzy number [31].
For each -level of the fuzzy number which represents a pa-
rameter, the model is run to determine the minimum and max-
imum possible values of the output. This information is then di-
rectly used to construct the corresponding membership function
of the output which is used as a measure of uncertainty. If the
output is monotonic with respect to the dependent fuzzy num-
bers, the process is rather simple since only two simulations will
be enough for each -level (one for each boundary). Otherwise,
optimization routines have to be carried out to determine the
minimum and maximum values of the output for each -level.

B. Fuzzy Probabilities

A fuzzy probability, i.e., a fuzzy set defined in probability
space, is represented by a fuzzy number between 0 and 1 as-
signed to the probability of an event occurrence [19], [26], [32].

One can choose depending upon the suitability different
types of membership function for fuzzy probability; the more
confident portion is given value 1 and other portions are given
values between [0,1]. Our goal is to use fuzzy probabilities to
describe occurrence probabilities of events. To this end, we
follow the standard approach proposed by Soman and Misra
[21] to describe the probabilities of various unions, intersec-
tions, and complements of these events occurrences.

C. Fuzzy Probabilistic Fault Tree Analysis

In this paper, the fault tree analysis is based on fuzzy set
theory. So, we can allocate a degree of uncertainty to each value
of the failure probability. The fuzzy probability of system failure
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Fig. 3. Fault tree example.

(top event occurrence) is determined from the fuzzy probabili-
ties of components failure.

For example, in the fault tree shown in Fig. 3, if we assume
that the events are independent, and have low failure proba-
bilities (rare-event approximation), the fuzzy probability of top
event occurrence can be expressed by

where

where is the fuzzy probability of system failure (top event
occurrence), and is the fuzzy probability of a component
failure.

D. Fuzzy Probabilistic Importance Measure

The methods to evaluate the relative influence of components
availability on reliability or availability of the entire system pro-
vide useful information about the importance of these elements.
Many measures are available in conventional probabilistic ap-
proaches [33]–[35]. These measures are based on the evaluation
of the contribution of components failure probabilities to the
system failure probability. However, probabilistic importance
measures are not suitable for the fuzzy approach proposed in
this paper, because they are defined for crisp values or proba-
bility distributions. Therefore, fuzzy importance measures were
introduced by Furuta and Shiraishi [36]. They have proposed a
fuzzy importance measure equivalent to structural importance.
Liang and Wang [37] proposed a fuzzy importance index based
on a ranking method of triangular fuzzy numbers with maxi-
mizing and minimizing sets. Guimarees et al. [38] proposed a
fuzzy importance measure based on the Euclidian distance be-
tween two fuzzy sets.

Here, we introduce a fuzzy probabilistic importance measure
defined by [39]

(1)

where is the center of area method of defuzzification used
to obtain a crisp value from the fuzzy probability which is
given by

(2)

where is the fuzzy probability of system failure when the
component is available (the failure probability of the compo-
nent is equal to 0), and is the fuzzy probability of system
failure when the component is not available (the failure prob-
ability of the component is equal to 1).

IV. APPLICATION EXAMPLE

A. Process

In order to illustrate the approach proposed in this paper, let us
consider a process composed of a pressurized vessel containing
volatile flammable liquid. The example process is defined in
the technical report ISA-TR84.00.02-2002 [11]. The engineered
systems available are the following.

• An independent pressure transmitter to initiate a high pres-
sure alarm and alert the operator to take an appropriate ac-
tion to stop inflow of material;

• In case the operator fails to respond, a pressure relief valve
releases material in the environment and thus reduces the
vessel pressure and prevents its failure.

The safety target level for the vessel is: no release to the at-
mosphere with a frequency of occurrence greater than in
one year. A hazard and operability (HAZOP) analysis was per-
formed to evaluate hazardous events that have the potential to re-
lease material in the environment. The results of HAZOP study
identify that an overpressure condition could result in a release
of flammable material in the environment, and a risk analysis
technique indicates that the safety function required to protect
against the overpressure condition needs a SIL2.

As a SIS is used to perform the safety target level for the
vessel, our goal is to evaluate its , and make certain that
this SIS meets the SIL2. The example process with the imple-
mented SIS (see Fig. 4), the schematic SIS configuration (see
Fig. 5), and the reliability data (failure probabilities of compo-
nents which are computed from the failure rates) are defined
in the technical report ISA-TR84.00.02-2002 [11]. The error
factor values of failure probabilities were chosen between 1.1
and 1.7 which is very realistic according to Kletz [9]. A fuzzy
probabilistic fault tree analysis is used to evaluate the SIL of the
SIS by determining its . The results will be compared
to those obtained by a conventional probabilistic fault tree anal-
ysis. Finally, we provide guidance on reducing the SIL uncer-
tainty based on a fuzzy probabilistic importance measure.

B. Uncertainty Fault Tree Analysis

Fault tree analysis consists of two major parts: construction
and evaluation. Here, we are only concerned with the evaluation
of occurrence probability of fault tree top event. The fault tree
model of SIS failure on demand is shown in Fig. 6.

First, we propose to compare fuzzy probabilistic and conven-
tional probabilistic approaches to evaluate the SIS PFD from the
components failure probabilities.
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Fig. 4. Process diagram of the example [11].

Fig. 5. Schematic SIS configuration of the example [11].

1) Assumptions:
• The basic events of the fault tree are independent.
• The failure probabilities represent the average failure prob-

abilities per year.
• The failure probabilities of SIS components are computed

from their failure rates.
2) Fuzzy Probabilistic Approach: In the proposed method,

the uncertainty of components failure probabilities is treated by
taking fuzzy probabilities. The failure probabilities of SIS com-
ponents are computed from their failure rates. Fig. 7 provides
representation of a fuzzy probability of a component failure. The
parameter is the lower bound, the parameter is the modal
value, and the parameter is the upper bound for each fuzzy
probability of components failure. These parameters are given
in Table II. We choose the triangular shapes because of their
mathematical simplicity. However, our approach can be applied
for any shape (trapezoidal, peak, normal, ).

In the fault tree shown in Fig. 6, there are 11 minimal cut-sets
(cf. Table III). Since basic events have low failure probabilities,
we can use the rare-event approximation. Then, we determine
the fuzzy probability of the top event occurrence (fuzzy SIS
PFD) from the fuzzy probabilities of components failure. Fig. 8
gives the fuzzy probability of the top event occurrence (fuzzy
SIS PFD). Table IV gives lower and upper bound values ob-
tained in each -level.

3) Conventional Probabilistic Approach: The present prob-
abilistic approach to determine the SIS PFD consists in treating
the components failure probabilities as random variables repre-
sented by a specified distributions (log-normal, normal, log-uni-

form ). In this paper, the uncertainty of each failure proba-
bility will be represented by a log-triangular distribution which
is defined by a median and an error factor

[37] given in Table V. We choose a log-triangular dis-
tribution because it is similar to the triangular shape used in
the fuzzy probabilistic approach. The log-triangular probability
distribution of components failure is shown in Fig. 9. The soft-
ware FAULT TREE + developed by the ISOGRAPH Company
has been used for generating minimal cut-sets and top event
failure probability estimation. It uses Monte Carlo sampling
simulations to repeatedly sample components failure probabili-
ties from the appropriate distributions, calculate and record the
top event failure probability. Fig. 10 gives the frequency distri-
bution of the top event occurrence probability (SIS PFD).

C. Comparison Between the Two Approaches

In order to do a comparison between the fuzzy probabilistic
and the conventional probabilistic approaches, we use three
measures for each approach.

In the fuzzy probabilistic approach, we use the following
measures.

• Modal value: The peak of the fuzzy SIS PFD is called the
modal value. This value is the element with the highest con-
fidence in the fuzzy SIS PFD. In this example, the modal
value is the which corresponds to SIL1;

• Average index: We use the index proposed by Yager [40]
which is defined by

(3)

where and represent the left-end-point and
the right-end-point of the interval corresponding to the

-level. We choose this index because it is assumed that
we have an unbiased approach to making a decision. In this
study, the average index is which corresponds
to SIL1;

• Knowledge interval: The knowledge interval is obtained
by the 0-level of the fuzzy SIS PFD. It represents the max-
imum interval within where a true value may exist. In this
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Fig. 6. Fault tree of the example.

Fig. 7. Fuzzy probability of a component failure.

TABLE II
PARAMETERS OF FUZZY PROBABILITIES

example, the knowledge interval is [ ,
] which falls into SIL1 or SIL2.

In the conventional probabilistic approach, we use the following
three measures.

• Median: The median is the value that each result has a
50% probability of exceeding. In this example, frequency

TABLE III
FAULT TREE MINIMAL CUT-SETS

which corresponds to SIL1.
The modal value in the fuzzy probabilistic approach can be
compared to the median value in the conventional proba-
bilistic approach;

• Mean: The mean value is defined by

(4)
where represents the number of samples of Monte Carlo
simulations. The average index in the fuzzy probabilistic
approach can be compared to the mean value in the con-
ventional probabilistic approach.

• Maximum and minimum values: These values can be com-
pared to the knowledge interval, and they are given by
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Fig. 8. Fuzzy SIS PFD.

TABLE IV
LOWER AND UPPER BOUND VALUES FOR FUZZY SIS PFD

TABLE V
UNCERTAINTY PARAMETERS OF COMPONENTS FAILURE PROBABILITIES

Fig. 9. Frequency probability distribution of a component failure.

— which corre-
sponds to SIL2;

— which corre-
sponds to SIL1.

This study shows that the differences between results ob-
tained using either approach with respect to two measures
(modal value vs. median and average index vs. mean) are very
small, and the SIL obtained in each approach is the same. The
width of the support defined by the knowledge interval in the
fuzzy approach is higher than the width of the support in the
minimum and maximum values in the conventional proba-
bilistic approach. However, in the conventional probabilistic
approach the obtained probability values can lie anywhere
between 0 and 1.

D. Fuzzy Probabilistic Importance Measures

According to the results above, we have to reduce the uncer-
tainty about determining the SIL of the SIS. That is why, we
propose to compute the importance of SIS components. We use
the fuzzy probabilistic importance measure defined in (1).
The fuzzy probability is given by

(5)

where is the fuzzy SIS PFD when the component is avail-
able (the failure probability of the component is equal to 0),

and is the fuzzy SIS PFD when the component is not
available (the failure probability of the component is equal to
1).

The results of fuzzy probabilistic importance measures calcu-
lations for SIS components are summarized in Fig. 11. We note
that the most critical component to system failure is related to
the logic solver with an importance value of 0.99. The relatively
higher value of indicates that a small variation in the
logic solver configuration causes a relatively greater change in
the estimate of the SIS PFD and may be caused a significant
change in the SIL of the SIS. These results allow us to make ef-
fort on the logic solver configuration to reduce uncertainty.

E. Reducing Uncertainty

We aim to reduce uncertainty about determining the SIL.
That’s why we modify the SIS configuration. Since, the fuzzy
probabilistic importance measures have identified the logic
solver as the most critical component in the SIS, we propose
to modify the logic solver configuration. We add another
logic solver in the SIS in order to evaluate the impact of this
change on the SIL uncertainty. Then we have two possible
configurations: the (i.e., the SIS will fail if the two logic
solvers fail), and the (i.e., the SIS will fail if one of the
two logic solvers fails). We compute the fuzzy SIS PFD of each
SIS configuration (cf. Fig. 12). The voting configuration
is superior to others voting configurations ( and ) for
reducing the SIL uncertainty. In the voting configuration,
we are certain that the SIL is 1.

The benefit of this method is providing to the decision-maker
a good picture of reducing the SIL uncertainty, by modifying
the configuration of the most critical components, or trying to
reduce the uncertainty about these components reliability pa-
rameters. Other considerations, such as components availability,
and maintenance policies, could also drive the decision towards
reducing the SIL uncertainty and achieving the required SIL.
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Fig. 10. Frequency probability distribution of SIS PFD.

Fig. 11. Fuzzy probabilistic importance measures.

Fig. 12. Fuzzy SIS PFD as a function of SIS configurations.

V. CONCLUSION

Evaluating the SIL of SISs is crucial to achieve the safety
target level of the process. However, the uncertainty of relia-

bility parameters of SIS components is not taken into account
in the methods proposed by safety standards [2], [3]. In this
paper, we have proposed a fuzzy probabilistic approach to eval-
uate the SIL of the SIS, when there is an uncertainty about the
components failure probabilities. This approach is based on the
use of fuzzy probabilities to evaluate the SIS PFD and the SIL
of the SIS. To demonstrate the efficiency of our approach, we
have applied it to a process example from the technical report
ISA-TR84.00.02-2002 [11], and compared it to a conventional
probabilistic approach. The results justify the effectiveness of
the proposed methodology in evaluating the SIL of the SIS.
Moreover, the approach we proposed offers a guidance on re-
ducing the SIL uncertainty based on a fuzzy probabilistic im-
portance measure which is used to identify the SIS critical com-
ponents. These critical components are then used to modify the
SIS configuration for reducing the SIL uncertainty. It is inter-
esting as further research to incorporate the issues of mainte-
nance and repair strategies into the fuzzy probabilistic approach
in order to perform the tradeoff between the maintenance cost
and the required SIL for the SIS.
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