
Certified Testing of C Compilers for Embedded Systems

Olwen Morgan

Metriqa Ltd., 12, Maesderwenydd, Pencader, Carmarthenshire, UK SA39 9HF, omorgangmetrigacom

Keywords: C compiler validation, certification testing * Fortran: NBS Fortran Test Programs (c1973)

Abstract . Java: Plum-Hall Validation Suite for Java, Perennial
JETS (1998 onwards)

For most embedded systems the implementation language of
choice is C. Currently some vehicle-based software- * Pascal:PascalCompilervalidationSuite(1981)
controlled embedded systems, notably those for traction As this (non-exhaustive) list shows, compiler validation suites
control and ABS, are assessed at ISO/EC 61508 SIL4 [3]. At have been developed for most widely used programming
this level it is highly recommended that developers use languages very soon after they have been standardised. An
certificated compilers. This paper sets out the rationale for interesting account of such developments up to around 1979
such use, the nature of certification testing and what questions is given in [2]. In addition to these suites, various ad-hoc tests
developers should ask their compiler vendors. have been developed and placed in the public domain, notably

Kahan's paranoia tool for testing arithmetic and
1 Introduction mathematical functions. Originally developed for BASIC

implementations, it is now available for Fortran, Pascal, Ada,Even today, automotive systems engineers are surprised at C, C++ and Java.
how many on-board computers modem vehicles have. The
author knows of one top-of-range car audio system that Most of the test suites have been used in formal compiler
contains no fewer than seven embedded microprocessors in validation services offered in the US by NBS and in the UK
its top-of range model. With that many for audio alone, it by BSI. European standards and certification bodies also
should surprise nobody that the microprocessor population of offered services in their own countries and protocols for
a modem saloon car can run to two dozen or more. mutual recognition of validation certificates exist.

Vehicle-based embedded systems support applications at all The availability of test suites and services nevertheless belies
safety-integrity levels. Audio systems are usually at SILl but the technical difficulties of establishing and sustaining a
an inertial sensing unit providing data for ABS and traction reliable test capability. Like any other form of testing,
control is likely to be at SIL4. Even at SIL4, systems may be compiler testing needs to produce accurate, repeatable and
subject tight cost constraints. The target unit cost for an reproducible results. This requires careful test suite design
inertial sensing unit can be three dollars or less. Meeting high and well controlled test procedures. Few software engineers
integrity levels at low cost requires a robust software process in the world have experience in both of these areas. Therein
with dependable tools. Above all, it needs compilers to lie many pitfalls for unwary test suite developers, test service
comply with language standards. providers and customers for test reports.

Historically, validation suites have been the only widely The remainder of this paper discusses the essentials of test
accepted tools for providing an assurance that a compiler suite design, the nature of controlled testing procedures and
complies with its language standard. The use of such suites issues facing providers and users of testing services. The
stretches back over four decades 40. Salient examples (with special aspects of testing implementations of floating-point
approximate dates where known) over this period include: arithmetic are covered and the paper concludes with a

* Ada: US DOD Ada Validation Suite (1980s) checklist of advice for compiler vendors, testers and users.

* C: Plum-Hall Validation Suite for C, Perennial ACVS, 2 Essentials of test suite design
CVSA and CVSA-Freestanding (I1990 onwards)CVSA ndCSA-Feestnding(199 onwrds)The body of knowledge in test suite design is sparsely

* C++: Plum-Hall Validation suite for C++, Perennial documented - possibly owing to the specialised nature of the
C++VS and EC++VS (1990 onwards) techniques used. Wichmann and Sale, the developers of the

* COBOL: US Air Force COBOL Compiler Validation Pascal Compiler Validation Suite (PCVS), sought from the
System (c1967), US Navy COBOL Audit Routines outset to follow key principles of metrology in their design,
(c1968), US DOD COBOL Compiler Validation System which they documented in [5]. Though long out of print, this
(c1970) book iS essential reading for anyone designing a serious

compiler test suite. Key facets of their design were:

Authorized licensed use limited to: Fachhochschule FH Offenburg. Downloaded on May 31, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

* Checksumming the code of test programs so that their * Portability: All tests, even those of implementation-
correct conveyance on media or via data networks could defined features, were designed to be portable, i.e. to
be verified. deliver reliable verdicts for all conforming compilers.

This was a significant advance on previous test suite
* Testing only one requirement per program. This dein.CBLadFrantsshdoenedd

yields a test suite with a large number of small programs, manual ant runwt some cmiers.
which is serendipitously convenient for testing cross

m

compilers for small target systems. * Support for automatic processing of results: The first
version of PCVS had around 400 programs. Later

* Classification of tests. Test programs in PVCS were versions reached nearer to 800. This was due to the "one
divided several classes ofwhich the main ones were: requirement per program" approach. It needed automatic
- CONFORMANCE: These programs were always in tools to gather and format results later printing. To

correct standard language and were expected to facilitate this, outputs from test programs followed a
compile and achieve a "PASS" verdict when run standard format that could be easily processed by test

- DEVIANCE. These programs were never in standard management sofare.
language but differed from it in some subtle way. * Separation of syntax and semantics: Testing of
They detected compilers that supported language syntactic and semantic features was separated. Hence, for
extensions, failed to check or limit some standard example, the tests for accepting all the syntactic forms of
language feature or exhibited some common error, logical expressions were distinct from those used to test

the evaluation of Boolean operators.
- IMPLEMENTATION-DEFINED. These programs

class were always in standard language but used In the first decade of the 21St century, these approaches seem
implementation-defined features. They tested the eminent good sense. So indeed they were regarded in 1981
compiler's handling of such features and when run, when the PCVS was first published. Individually all of them
either diagnosed the nature of the feature of can be seen traced to earlier test suites. What Wichmann and
produced a verdict of "NOT DETERMINED". Sale did for the first time, however, was to apply all of these

principles in a single suite. In so doing, they set a technical
- IMPLEMENTATION-DEPENDENT. Programs in'

this class suhtodt istandard that developers of subsequent test suites often chose
thiseclass soughteto deteprmvined.ho implemenotatn to ignore and their work remains a valuable reference fordependent features were provided. They were not
necessarily all in standard language and could yield anyone seeking to evaluate test suites for C.
indeterminate verdicts.

3 Controlling test procedures
- ERROR-HANDLING. These tests were designed to

evoke exactly one error. Each such program was Compiler testing must deliver accurate, repeatable and
preceded by a pre-test program, which was as nearly reproducible results. Without careful test suite design, none of
identical to it as possible but did not contain these qualities is attainable. But though good suite design is
constructs that evoked the error. Pre-tests were all in necessary, it is by no means sufficient. Without controlled test
standard language and checked that the actual test procedures, all ofthem can be prejudiced.
did not fail for reasons unrelated to the specific error Ideally a compiler testing organisation should offer a service
for which the compiler's behaviour was being tested. complying with ISO/IEC 17025 [4] which essentially means

For the five main classes, analogous classes of tests can be that all test methods used must be technically fit for purpose.
defined for C. The three classes of CONFORMANCE, To make compiler testing procedures fit for purpose is not as
DEVIANCE and IMPLEMENTATION-DEFINED are technically straightforward as it may seem.
conceptually identical to those for Pascal. Pascal's
IMPLEMENTATION-DEPENDENT class corresponds 3.1 Accuracy
approximately to tests of unspecified features in C while, Technical measures supporting accuracy are deployed mostly
again approximately, the ERROR-HANDLING class

in the design of test programs. An obvious example for C iscorresponds to tests of what behaviour the implementation in th desino tethpram n obvis exampl orCnis
provides in cases where the standard leaves the behaviour to determ ine plain char is do unsigne
undefined. Writing a conforming portable program to do this is by no

means as easy as it may at first appear. As regards accuracy,
The identification of these test classes was an important the unambiguous diagnosis of implementation-defined and
development since each class requires a subtly different kind unspecified features makes the greatest technical demands on
of test design. More importantly, systematic test classification the test suite designer.
allows the design of automated test management software toNertls,wihusontstpcdrs,vntebs-
be simplified yet permits more insightful interpretation of test deige tet a o rdc curt nwr.A ead
results. As a technique of suite design it can be applied to any tesgens fpanca,mn oplr rvd
language. Unfortunately this lesson has been lost on some copl-ieoto.oslc sine or unige tramn.A

developersosubsequent est suites.robust test procedure must record exactly which options are

Authorized licensed use limited to: Fachhochschule FH Offenburg. Downloaded on May 31, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

used. The simplest way to do this is never to put such options As far as the author is aware, Metriqa is the first organisation
on the command line but gather them in a file that is to research this area systematically and our methods remain
referenced from the command line. The contents of the file under development (and for the moment under wraps).
can then be reproduced as an accurate record of what the
compile-time options were during the test. 4 Special issues for embedded targets
Hence, accuracy relies in no small degree on the design of test^ ~~~~~~~~~~~~~Testingof C compilers for embedded systems poses technical
management software. difficulties not encountered in hosted environments. Users of

3.2 Repeatability and reproducibility test suites need to be aware of these difficulties and how test3.2 Repeatability and reproducibility sie elwt hm
suites deal with them.

Repeatability and reproducibility are often confused. Testing 4.1 Test suites for embedded C implementations
is repeatable when successive runs of tests on the same
equipment by the same tester produce results that match each In the terminology of the C standard, a cross-compiler
other according to defined criteria. It is reproducible when....other acodn odfndciei.Isrpounprovides a freestanding implementation and the only libraries
runs of tests on different but technically similar equipment, that standard requires it to support are:
and carried out by persons other than the original tester,
produce results that match the original results according to <float. h> <iso646t . h> <limitsd.h>
defined criteria of agreement. Roughly speaking repeatability <stdarg.h>,<stdbool.h>,<stddef,h> and
indicates good control of local testing procedures while <stdint.h>.
reproducibility indicates technically coherence across Conspicuously missing from this list are <math. h>, whose
different test equipments and procedures. functions are frequently required in control applications, and
The key to repeatability is to ensure total control of all factors <errno. h>, which <math. h> typically requires for
that may influence the results of tests. Metriqa compiler test exception values. Also absent is <string. h>, whose
systems, for example, are never connected to an external simpler functions are often useful in embedded applications.
network so that no special measures are needed to prevent More significantly, for testing embedded targets, no I/O
network traffic from interfering with test operation. The facilities are required.
procedures are also designed to establish a tightly controlled Given these frugally limited requirements for freestanding
directory environment from which tests are retrieved and implementations, the question of the scope of a test suite
compiled and to which test results are stored as they are arises. Providers of C compiler test suites such as Plum-Hall
produced. Configuration checks run before and after each test and Perennial both offer reduced-scope test suites for such
ensure that the state of the configuration is as expected implementations. Since most embedded compiler vendors
throughout any given period of testing. This also supports offer an embedded <stdio. h> with limited basic facilities,
restarting of failed tests if required and verification of result both Plum-Hall and Perennial are able to use them to createtranscripts at very fine levels of granularity, output from test programs. Otherwise, both are able to use I/O
Metriqa test systems also provide support for reproducibility. routines customised for environment that do not rely on
In a recent validation, our equipment was unplugged from one <stdio.h> functions. The comments below refer to the
machine, plugged into another and tests rerun producing freestanding versions of both suites.
identical results. This can be achieved between any two In their cut-down forms for freestanding implementations,
systems that run the same compiler and support mounting of neither suite tests mathematical functions particularly
externally connected disk drives as host system directories.
Metriqa can currently do this using USB and SCSI connected hruhyadtsso latn-on rtmtcaelsMetrqa cn cffenly o ths uing SB nd SSI onnetedextensive than those provided by some other test tools.test configurations. Our most compact USB-connected test
configuration is so small that we can fit several into a cabin- The Plum-Hall test suite does not follow the one-requirement-
baggage-sized case. one-test approach and consists ofjust over 200 test programs.

In contrast, the Perennial suite sticks to one-requirement-one-
3.3 Configuration control test and contains over 8000 small programs.

To summarise, the procedural side of accuracy, repeatability Small program size means that Perennial test object codes are

and reproducibility is best assured by design of automated test smaller than Plum-Hall ones and may run in embedded

procedures that perform continuous configuration checks to: environments with limited memory that are too small for
some Plum-Hall tests. By testing several requirements in a

1. Control all factors, static and dynamic that may affect the single program, the Plum-Hall tests also risk producing
results oftests, inaccurate results if failures early in a program prejudice the

2. Check invariants that should hold at key waypoints in results of later tests in the same program. As regards isolation
correctly controlled tests, of test failures, therefore, the Perennial suite is the better

3. Record the results of all such verifications as the test designed ofthe two.
session progresses.

Authorized licensed use limited to: Fachhochschule FH Offenburg. Downloaded on May 31, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

4.2 Aspects of test suite design 5 Testing floating-point characteristics

Curiously, neither vendor of C test suites appears yet to
supply checksums with which to check the integrity of the test 5.1 What is special about floating-point?
suite code as delivered to customers. Of more concern
hoevr is tha at les on of thes sute usscndtoa Many coding standards ban floating-point arithmetic (FPA) inhowever,is that.,,leastoneofthesesuitesusescompil critical applications. Why this restriction for something that
compilation so that the source code actually amounts to just doing sums? One reason is that few software
depends on the testing of conditions within the translation engineers have the skills required for coding of sensitive
environment by the pre-processor. Effectively this lets the numerical processes. Even in seemingly simple cases detailed
implementation under test decide for itself what tests it will knowledge of numerical methods may be required to ensure
be subjected to. The author views this as undesirable and that processes are robust and stable.
advises clients against using suites that make unnecessary use
of conditional compilation. Another undesirable aspect is that Another reason is that FPA has olten been implemented
some tests of unspecified or undefined features do not have incorrectly, not only in software but also in hardware. (In one
corresponding pre-tests. This too is poor test design and to be case a well-known trademark was irreverently claimed to
avoided as far as is reasonably practical. stand for "Produces Erroneous Numbers Through Incorrect

Understanding of Mathematics"). In critical applications, one
4.3 Running tests should be suspicious of any floating-point implementation

until there is evidence that positively suggests its correctness.
Both Plum-Hall and Perennial test suites come with scripts to
automate testing, but these may need significant adaptation 5.2 How should floating-point be tested?
for embedded implementations. As far as the author is aware
they do not contain the kinds of features that Metriqa tes The questionitn this section's title is easily answered: by
systems use in support of repeatability and reproducibility. experts, with exceptional care and using specialised tests.
Moreover, most users testing embedded C compilers have Users requiring such tests need to supplement validation
developed their own test management software, usually with suites with more specialised test tools.
ergonomic rather metrological consideration in mind. Tests of floating-point characteristics are oftwo kinds:
Running tests on slower embedded targets can be time- (a) checks on parameters of floating-point representations
consuming. Elapsed time to run a test suite is dominated, and the accuracy of basic arithmetic operators,
however, not by processor speed but by the time to download (b) checks on the accuracy of the mathematical functions.
test program object images from the host to the target. This in For (a) the methods of Cody and Waite are indispensable. The
turn depends on the characteristics of the (usually) USB host-
target transfer interface. Table 1 gives approximate times
observed by Metriqa for a recent series of215 tests. esparanoia, a version adapted for embedded systems are

freely available. Users should appreciate, however, that these
tools depart from the one-requirement-one test principle and

Target Elapsed time
may give misleading results under adverse conditions. That

M16 C 2.5 hrs reservation notwithstanding, both tools are useful in testing
M32C 1.5 floating-point characteristics. If either produces results that do

not agree with <float . h>, it is a significant reason to doubt
the quality ofthe floating-point implementation.

ARM9 15 minutes Testing the accuracy of mathematical functions is a much
harder task. The approach used in the Pascal Compiler
Validation Suite was to produce reference implementations of

Running all 8000+ programs of the Perennial suite would on each function in standard language using only floating-point
this basis take about 10 hours for the ARM 9 target and 100 types and their arithmetic operations. The results produced by
hours for the M16C. A 10-hour elapsed time is manageable such implementations were, as far as possible, accurate to the
but 100 hours would span over two working weeks. This is last bit of their representations.
one reason why automated test management software needs to To get that accuracy one uses a good rational approximation
support suspend and restart facilities, then a fast-converging iteration to refine it. Cody and Waite
Another option, of course, would be to connect several [1] give examples in Fortran but production of C reference
identical target processors to the host. Two 4-port USB implementations is not a matter of mere translation. It helps to
interfaces, for example, would support eight externally be conversant with Chebyshev approximation, Lipschitz
connected targets reducing M16C elapsed time to the order of conditions and methods for superquadratic convergence, so
12 hours. Special controls are needed when using multiple volunteers should form an orderly queue!...
targets but they do not pose any new technical difficulties.

Authorized licensed use limited to: Fachhochschule FH Offenburg. Downloaded on May 31, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

6 Compiler testing services 7 A short checklist for compiler users

With the market in a period of rapid development, what
should users look for in C compiler validation? The following

Historically, few compiler validation services have been non-exhaustive checklist identifies issues to raise with
commercially viable. The only one that survived for any vendors and testers:
length of time was that for Ada where use of the name "Ada" 1. The tester should be independent of the vendor and the
was permitted only to validated compilers. The past decade, business arrangements between them should not create
however, has seen Ada displaced by C and largely through incentives that prejudice the tester's impartiality.
economic forces. The widespread availability of embedded C 2. The tester should use recognised test suites (for C either
implementations made it the only viable choice when Plum-Hall or Perennial) and or tests that are in the public
software needed to be developed for multiple targets. domain. Test reports should state which version of a suite
In earlier validation services the vendor bore the cost of was used for testing.
validation, submitted the compiler for testing and specified 3. The tester should use test management software that
the options under which it was claimed to conform to the provides adequate controls in support of accuracy,
standard. The tester then carried out the tests and produced repeatability and reproducibility.
the validation report. While this model was accepted for
compilers of Pascal and Ada, it is far from ideal for embedded 4 stports rshuld sta nlo
C compilers, where different applications may require su
radically differing invocation options. 5. Reports should state any qualifications and limitations
Costs were high. Most compilers were tested only under one that apply to the reported tests. In particular a statement

set of options and testing was repeated annually or on major of test conditions should clearly identify the options used
..at compiler invocations.new releases. In a market with a limited number of vendors, a

the total market for testing was so small that charges were 6. Reports should be signed by the tester and second person
dominated by overheads and some testing operations never to certify that they have been conducted as stated. They
broke even on a commercial basis. do not certify the compiler. They certify that the

testing described in the report was carried out as
6.2 New validation services described.

Under the vendor-funded business model, even small testing 7. Supply of test reports should be under written contract,
organisations wlow overheads cannot ta m-ak which should clearly state the liability of the tester inorganisations with lOW overheads cannot today MaK%,

rsetoftetss
adequate revenues at less than around $20,000 per validation. respect of the tests.
Nevertheless change is in the wind. ISO/IEC 61508, and These items of advice are for guidance only and should not be
sector-specific standards based on it are creating a new taken as exhaustive. Nevertheless, enquiries based on items 3
demand for validation of embedded C compilers. This and 4 may cause red faces among some testers.
demand is eliciting new business models for compiler testing.
Metriqa has a user-funded business model. We test at a
vendor's site and then provide validation reports to users at a The author gratefully acknowledges the opportunity afforded
cost comparable with that of an extra seat for the compiler. to her by IAR in connection with the development of test
Reports are valid only for the user's licensed compiler and procedures for embedded C compilers.
continued validity requires maintenance payments in step
with the software licence. The user gets updated test reports References
for any new releases during the period of a report's validity.
Other business models are also emerging as testers enter the [1] Cody, W. J., and Waite, W., Software Manual for the
market and users can expect steady evolution of commercial Elementary Functions, Prentice-Hall, 1980, ISBN-10:
validation services under competitive market conditions. 0138220646.

[2] Dwyer, D. J. and Noble, D. I., (eds.), Language
6.3 Who watches over the testers? Implementation Validation, National Computing Centre

As new testing services emerge with diverse business models Ltd., April 1980
users need assurance about the quality of those services. In [3] IEC 61508-3 Functional safety of electrical electronic
the UK, any testing organisation that is serious about its work programmable electronic safety-related systems - Part 3.
should have or be seeking to achieve UKAS accreditation as a Software requirements
testing laboratory. The author is not aware of any testing [4] ISO/IEC 17025:2005 General requirements for the
organisations that currently hold UKAS accreditation competence ofcalibration and testing laboratories
specifically in the compiler-testing field but it is an area in [5] Wichmann, B. A. and Ciechanowicz, Z. J., Pascal
which users are wise to monitor developments. Compiler Validation, Wiley, 1983, ISBN-tO:0 0-47 1-

90133-4

Authorized licensed use limited to: Fachhochschule FH Offenburg. Downloaded on May 31, 2009 at 13:47 from IEEE Xplore. Restrictions apply.

