
TOWARDS A CALCULUS FOR SOFTWARE SIL

R.C. Short*

* Atkins Rail Limited
Euston Tower

286 Euston Road
London NW1

E-mail:roger.short@atkinsglobal.com

Keywords: Software, safety, complexity and experience on which the technical content of the
standards is based.

Abstract
This paper proposes an approach to estimating the SIL

Safety Integrity Level (SIL) is very widely used to define the achieved by software taking account of factors related to scale
safety properties of software, but because it does not take so that SIL can be used to reason about the expected safety
account of the scale of software in terms of size and performance of the software.
complexity it can give a misleading impression of the
potential unsafe failure rate. This paper proposes an approach 2 The Meanings of SIL
to assessing the SIL achieved by software so as to include the
effects of scale. IEC 61508 defines SIL as a discrete level (one out of a

possible four) where safety integrity level 4 has the highest
1 Introduction level of safety integrity and safety integrity level 1 has the

lowest, and it defines safety integrity as the probability of a
In many industrial applications assurance that software is fit safety-related system satisfactorily performing the required
for the safety functions which it is required to perform is safety functions under all the stated conditions within a stated
provided by showing that it complies with the requirements period of time.
for an appropriate Safety Integrity Level (SIL) as defined by
IEC 61508 [6] or one of its industry specific equivalents such IEC 61508 also includes a famous table relating SIL to
as EN 50128 for railway applications [2]. dangerous failure rate, reproduced below as Table 1. A

careful reading of IEC 61508 shows that the standard does not
There have been a number of criticisms of the SIL concept, actually claim that by following its recommendations for each
including that it is over dependent on engineering judgement, SIL for software the corresponding probabilities of dangerous
it is related more to software quality than to safety, and that failure will actually be achieved, but it is widely', if
the term SIL is often used loosely [7,8,9]. These criticisms are incorrectly, interpreted as saying this.
soundly based, but the standards compliance/SIL approach is
now so firmly embedded and so convenient to suppliers and Safety Integrity Probability of dangerous
users that there is little prospect of it being abandoned or Level failure per hour
fundamentally changed in the foreseeable future. 4 > i0-9 to < 10-8

3 > 10-8to <10-7
This paper is concerned with another problem with the way
that SIL is interpreted: the absence of a concept of scale when 2 2 10- to < 106
assessing the SIL of software. In effect, the various SIL-based 1 > 10-6 to < 10-5
software standards all say that if any of the sets of techniques
or measures which they recommend for a particular SIL are Table 1: SIL and Failure Probability in IEC 61508
applied software will achieve that SIL. Since the standards
make no mention of the scale of the software, in terms of size, The railway industry standards EN 50128 and EN 50129 [3]
complexity or any other dimension, this is tantamount to are careful to avoid mentioning probability in the definition of
saying that, regardless of scale, the same result will achieved SIL, which they define as a number which indicates the
whether interpreted as a failure rate, probability or level of required degree of confidence that a system will meet its
confidence. specified safety functions with respect to systematic failures,

Not only is this at variance with the entire science of software
metrics but it is also contrary to the engineering judgement For example, the author has encountered this interpretation

on numerous occasions when reviewing safety cases
associated with major railway projects.

Authorized licensed use limited to: Fachhochschule FH Offenburg. Downloaded on April 22, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

and the table in EN 50128 which is the equivalent of Table 1 Required SIL SIL(A)
above uses descriptive terms ranging from "low" to "very determined to SIL(R) Due to size andabove ~~~~~~~~~~~~~~~~~~beSLXcomplexity this is
high" in place of the probability values. Confidence is used beSILXSIL X ± A software

by these standards in its plain language sense and not with a Techniques
for SIL X

mathematical meaning which can be evaluated or used in selected
calculations, but it is true in practice that people are confident I
to use software which they are assured has achieved an "Need" Software Engineering Software
appropriate SIL.

Despite the differences in their approaches to quantification, Figure 2: SIL(A) X SIL(R)
the IEC and EN standards both use SIL in two ways:

a) As a measure of the desired probability or 3 Defects and Failures
degree of confidence that software should The various ways of defining SIL are concerned with the wayachieve in satisfactorily performing the required in which software behaves in relation to safety functions
safety functions (shown as SIL(R) below), rather than with the number of defects in the software. For the

b) As a prediction of the probability or degree of purposes of this paper a defect is taken to be any feature of
confidence that software will to achieve in software which will result in failure, while for failure the
satisfactorily performing the required safety common sense definition used by the American Society of
functions (shown as SIL(A) below) Civil Engineers, "failure is an unacceptable difference

between expected and observed performance" is eminentlyA number of techniques, such as the use of risk graphs, are sial.Vee nti a,"eet nldsntol ie
available for (a). They are all based on assessment of the risks oficde. Vwhic the saretoebehavinc a wy ino
of the application and, subject to all the uncertainties inherent intended by thedeige, ruao omissin an wron
in reliance on human judgement and fuzzy and incomplete
knowledge of risk, are consistent with the probability intentions in the design or specification.
calculus. A defect will only result in a failure if conditions occur which

cause the defective code to be executed (or in the case of
Prediction of the expected performance as in (b) is omission require the presence of code which is not there). The
customarily based on showing that the software has been dsrbto ffiue hc sehbtdb h otaewl
developed in conformity with one of the sets of techniques thus depend on both the distribution of defects within the
and measures recommended for the required SIL by the sowepand the distribution of demandsmade in the
respective standard. This is summarised by Figure 1 below, software. The distribution of demands is likely to be
where the achieved SIL is equal to the required SIL imperec u he distribution of de fects wl

irrespetiveothesale of he sofware. mpJerfectly understood, while the distribution of defects wil
irrespectiv oftesaleoftealmost certainly be unknown, so the prospects for accurately

Required SIL SIL(A) predicting the distribution of failures are likely to be slim.
Required SIL SLA
determined to SIL(R) SIL X techniques
be SILX were used, so this For software to be acceptably safe it is the probability ofis SILX software unsafe failures rather than the number of defects which must

Techniques a
for SIL X be made acceptably low. The extent to which failures can be
selected\selected classified as safe or unsafe is very dependent on the

I o application. For example in railway signalling systems, whose
"Need" Software Engineering Software primary aim is to prevent collisions between trains, any

failures which tend to stop or prevent train movements are
regarded as safe: an unsafe failure is one which permits a

Figure 1: SIL(A) = SIL(R) by definition train to move when it should not. In applications in other
industries different aspects of software behaviour may be

It is the proposal of this paper that a distinction should be important and it may be less easy to designate any failures as
made between the required and achieved SILs, and that the safe.
achieved SIL should be estimated by taking the SIL rating as
determined by compliance with the recommendations of the Although in many cases not all failures will be unsafe, the
relevant standard and adjusting it by means of factors which software engineering measures and techniques recommended
take account of size, complexity and the nature of potential by the standards are almost universally concerned with
failures, as summarised in Figure 2 below, reducing the number of defects, regardless of whether the

failures which they cause are likely to have an adverse effect
on safety. However, whilst the majority of generic software
engineering techniques may not inherently differentiate
between defects leading to safe or unsafe failures it may be
possible to focus some techniques, especially those concerned

Authorized licensed use limited to: Fachhochschule FH Offenburg. Downloaded on April 22, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

with analysis or testing, on the avoidance or removal of 4.2 Complexity
defects which cause unsafe failures in a specific application. A small digression on the nature of software complexity will

4 Size, Complexity and Software Defects make clear how it affects both the error rate and the number
of actions. In plain English "complexity" is defined as "the
state or quality of being intricate or complex". In turn, the

4.1 The Origin of Defects dictionary [1] includes among its definitions of "complex": "1
made up of various interconnected parts; composite. 2 (of

Some of the principal causes of software defects are thoughts, writing, etc.) intricate or involved." The first
summarised in Figure 3. Most defects are the result of human definition given by the same dictionary for "intricate" is
error or misunderstanding in the various activities which "difficult to understand".
transform the need into the product which is brought into use,
although it is also possible for defects to be caused by the Both definitions of complexity are relevant to the existence of
behaviour of software tools or by physical disturbance leading software defects. Structural complexity ("made up of various
to corruption of the software. interconnected parts"), e.g. in the form of many branches and

paths, will involve more design decisions, and also more tests
It can be seen that software is likely to contain defects due to and more analyses, than for simpler software of the same size
a number of causes: human error in performing software measured in lines of code. Cognitive complexity ("hard to
engineering activities, misunderstanding or ignorance of the understand") will increase the probability of error in each
application and its environment, and technical causes. action.

The number of defects due to human error in software A significant factor in cognitive complexity is the number of
engineering activities could be estimated as the product of the separate items that a person has to hold in their short-term
error rate per action and the number of actions to be memory in order to understand a particular operation.
performed. The error rate will depend on the competence of Software which makes greater demands on short-term
the people, the techniques used and the complexity of the memory for its understanding is less likely to be understood.
software, while the number of actions will depend on both the It has been estimated that the human short-term memory is
size and the complexity of the software. generally capable of holding no more than seven items, and

perhaps less, at one time [10]. Information which would need
to be held in short-term memory in order to understand a"Rality" ol aibeThe environment in which piece of software would include not only the variables used

"Need' the software works by the software but also the operations which were performedWhat the software
is intended to do on them and the path or paths which were being taken

Errorsof (ID through the program.
Errors ofo °
intention Misconceptions

Conception about the way the ,
i n o s c s wl

Overlooked side How the software worldworks It is not only structurally complex sofware which iS likely to
effects, special will be implementedcases, s have a high cognitive complexity. Size alone can lead to
preconditions

cognitive complexity even in software with a simple structure
Specification Errors in expressing h d a m o

Precise description and writing down heavy demands are made on short-term memory m
of what software specifications understanding a long sequence of operations.shall do.oprtns

Design Mistakes andomissionsA number of metrics exist for evaluating structural
Design Mistakes and omissionsExpression of spec. Misconceptions about complexity, such as McCabe's CyclomaticComplexityor

in logical statements the way components C
and structures work Halstead Complexity Measures, but the current state of the art

seems to lack a metric for cognitive complexity.
Code Mistakes

Transformation of Faulty tools 4.3 Understanding
design into machine
readable form.

In a review of 34 incidents involving control system failures
the Health and Safety Executive (HSE) found that 44°0 had

Load Faulty tools inadequate specification as their primary cause [5].Load code into Disturbancestarget hardware Operator error Inadequate specification of software is likely to be a
| ~~~~~~~reflection of poor understanding of the need which the

Use Equipment faults software is intended to fulfil and lack of knowledge of the
System operation Disturbances environment in which it will operate. Poor understanding and

lack of knowledge may of course relate to the competence of
Figure 3: The Origin of Defects the people concerned, but even if it is assumed that the people

have an average level of competence in the relevant field their

Authorized licensed use limited to: Fachhochschule FH Offenburg. Downloaded on April 22, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

knowledge and understanding may be taxed by the novelty or confidence predicted by IEC 61508 are justified. For a SIL
and complexity of the application. 3 system this could be represented by writing equation (1) as:

There do not seem to be any metrics for the complexity of Xusf =ZX3 SCA FPD (3)
applications, and the very idea of a metric for ignorance is
contradictory: how can we measure what we do not know? If it was judged that a software system being developed to
The nearest approach to a measure for these factors may well comply with the recommendations of SIL 3 was exceptionally
be judgement based on the degree of similarity to past large and complex, say 5 times as large and complex as
experience. "normal", and if the application was judged to be about twice

as complex as usually experienced, then (3) would be
5 Relating SIL to scale modified as follows;
The review in sections 3 and 4 above of the main factors sf = X3 (Sc x 5) (A x 2) F PD (4)
which determine the probability that software will exhibit
unsafe failures shows that they can be evaluated only to a which can be rearranged as
very rough approximation, if at all, and that for some factors
no relevant metrics exist. Xusf = 10X3 ScA FPD (5)

If the relationship between the factors were well enough From (2) it can be seen that 103 = X2, so that SIL 3 methods
understood, and if suitable metrics existed for all the factors, are estimated in this case to give a level of confidence
and if sufficient data were available to assign values to them, equivalent only to SIL 2.
the unsafe failure rate of software could be estimated from the
following formula. Another example can be provided by the case of a protection

system for which the required SIL was determined to be SIL
Xusf = Sc A F PD (1) 2, but which was assessed to have been developed only to SIL

Where 1 because not all of the recommendations of IEC 61508 for
Xusf Rate of unsafe failures per hour SIL 2 had been followed. However, the software was an
X = Number of defects per unit of software adaptation of that used in about 10 very similar previous

engineering effort applications, and because the application was not complex,
Sc Effort in producing software as a function of being defined by a fairly simple control table, it was judged

size and complexity that the application complexity could be treated as an order of
A = Multiplier depending on size and complexity of magnitude lower than "normal", so that equation (3) became:

application
F = Proportion of defects which result in unsafe Xusf=xSc(A x 0.1) FPD (6)

failures
PD = Probability per hour that a defect will be From (2) it can be seen that 0.1yl = X2, so for this simple

activated. application a SIL 1 process was able to give a level of
confidence equivalent to SIL 2.

The term X can be regarded as representing the combined
effect of the competences, methods and techniques applied to In the case of a subsystem or function for which it is possible
the engineering of the software. For software developed in to be confident that only a small proportion of potential
accordance with IEC 61508 it would represent the effect of defects would result in an unsafe failure the F term can be
the combination of techniques that had been chosen: a set of scaled down so that a level of confidence equivalent to a high
techniques recommended for SIL 1 could be represented by SIL can be achieved by software that has been developed
X1, a set of techniques recommended for SIL 2 could be according to the recommendations for a lower SIL. For
represented by Z2, and so on. example, a unit such as a modem or multiplexer forming part

of a data transmission system might have software developed
If we accept that the relative effectiveness of the according to the recommendations for SIL 1 but owing to the
combinations of techniques for different SILs is as stated in coding and addressing of its input and output data have very
IEC 61508, i.e. each SIL corresponds to an unsafe failure rate few potential defects capable of generating incorrect output
an rr i r an that of the next lower SIL, data which complied with the coding and addressing schemes
then the following relationship will apply to the values of X. of the data transmission system. If it were judged that no

more than 1 in 1000 potential defects could produce such an
X1=10X2= lOOZ3 =lOOOZ4 (2) unsafe output the version of equation (3) for the software of

this device would be:
Let us suppose that there are nominal values of 5c, A, F and
PD, (written as SC, A, F and PD) for which unsafe failure rates zus X1 SA (FX 0.001) PD (6)

Authorized licensed use limited to: Fachhochschule FH Offenburg. Downloaded on April 22, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

Again it can be seen from (2) that 0.001kl = X4, so for the [3] BS EN 50129 Railway applications - Communication,
software of this device a SIL 1 process was able to give a signalling and processing systems - Safety related
level of confidence equivalent to SIL 4. electronic systems for signalling, British Standards

Institute
It seems unlikely that the distribution of demands on the [4] N. Fenton and M. Neil, Software Metrics and Risk,
software relative to the distribution of defects would be FESMA 99, 2nd European Software Measurement
known well enough to draw any conclusions about its effect Conference, October 1999
on the rate of unsafe failures. [5] HSE, Out of Control: Why control systems go wrong

and how to prevent failure (2nd Edition), HSE Books,
6 Conclusion 2004

[6] IEC 61508 - Functional Safety of Electrical / Electronic
The approach outlined in section 5 above provides a means of / Programmable Electronic Safety-Related Systems.
evaluating the level of safety which software can be expected International Electrotechnical Commission.
to achieve, taking account of the methods used, the size and [7] J. McDermid, Software Safety: Where's the Evidence?
complexity of the software, the complexity and novelty of the 6th Australian Workshop on Industrial Experience
application, and the proportion of defects which are likely to with Safety Critical Systems and Software (SCS '01),
cause unsafe failure. The result is expressed in the familiar Brisbane. Conferences in Research and Practice in
form of a SIL, but this is now a SIL that is related to scale and Information Technology, Vol. 3 P Lindsay, Ed.
can be used, perhaps as a fuzzy quantity, in reasoning about [8] F. Redmill, Understanding the Use, Misuse and Abuse of
safety. Safety Integrity Levels, Proceedings of the Eighth

Safety-critical Systems Symposium, Southampton,
There are many imprecisions and uncertainties involved in UK. Springer, 8-10 February 2000
estimating the effects of the factors in the equations above, [9] M. Thomas, Engineering Judgement, 9th Australian
and it would probably be flattering to this approach to even Workshop on Safety Related Programmable Systems
call its results fuzzy. It is completely dependent on (SCS'04), Brisbane 2004
engineering judgement, which is notoriously fallible. Richard [10] H. A. Simon, The Sciences of the Artificial, 2nd ed. The
Feynman remarked in the context of the investigation into the MIT Press, 1981.
Challenger space shuttle disaster "When I hear the words
'engineering judgement', I know they are just going to make
up numbers" (quoted in [9]). However, the risk assessments
on which the allocation of SIL and other aspects of system
safety management are based are also heavily dependent on
the judgement of engineers and other experts who are
required to make judgements about the frequency and
consequences of hazards.

The use of engineering judgement to estimate factors such as
the size and complexity of software in order to evaluate the
effectiveness of achieving a SIL can be regarded as
commensurate with the use of engineering judgement to
estimate the frequency and consequences of hazards so as to
determine the required SIL.

This approach is not claimed to equal the rigour or theoretical
soundness of methods of evaluating evidence about software
such as those based on Bayesian Belief Networks [??]. Its
sole claim to merit is that it may open a way to a more
rational use of the SIL concept in areas where the reliance on
compliance with standards is deeply ingrained, often to the
exclusion of other methods.

References

[1] Collins English Dictionary, Millennium Edition
[2] BS EN 50128 Railway applications - Communications,

signalling and processing systems - Software for
railway control and protection systems, British
Standards Institute

Authorized licensed use limited to: Fachhochschule FH Offenburg. Downloaded on April 22, 2009 at 14:01 from IEEE Xplore. Restrictions apply.

