tex/theory1_ex6.tex
author Eugen Sawin <sawine@me73.com>
Wed, 03 Aug 2011 21:39:33 +0200
changeset 17 3bc8335b09b0
parent 8 862ab5c7c6df
permissions -rw-r--r--
Keine Lust.
sawine@7
     1
\documentclass[a4paper, 10pt, pagesize, smallheadings]{article}  
sawine@7
     2
\usepackage{graphicx}
sawine@7
     3
%\usepackage[latin1]{inputenc}
sawine@7
     4
\usepackage{amsmath, amsthm, amssymb}
sawine@7
     5
\usepackage{typearea}
sawine@7
     6
\usepackage{algorithm}
sawine@7
     7
\usepackage{algorithmic}
sawine@7
     8
\usepackage{fullpage}
sawine@7
     9
\usepackage{mathtools}
sawine@7
    10
\usepackage[all]{xy}
sawine@7
    11
\title{Theory I, Sheet 6 Solution}
sawine@7
    12
\author{Eugen Sawin}
sawine@7
    13
\renewcommand{\familydefault}{\sfdefault}
sawine@7
    14
\include{pythonlisting}
sawine@7
    15
sawine@7
    16
\pagestyle{empty}
sawine@7
    17
\begin{document}
sawine@7
    18
\maketitle
sawine@7
    19
sawine@7
    20
\section*{Exercise 6.1}
sawine@8
    21
\begin{align*}
sawine@8
    22
\Phi(T) &= |2 \cdot num - size|\\
sawine@8
    23
a_i &= \Phi_i - \Phi_{i-1} + t_i\\
sawine@8
    24
a_i &= |2k_i - s_i| - |2k_{i-1} - s_{i-1}| + t_i\\
sawine@8
    25
\end{align*}
sawine@7
    26
We calculate the amortized costs for the two distinct cases.
sawine@7
    27
sawine@7
    28
\subsection*{case 1 (no contraction required)}
sawine@7
    29
Since there was no contraction we know that $s_i = s_{i-1}$ and it follows that $\frac{1}{3}s_i \leq k_i \leq s_i - 1$. Since we have deleted an element we know that $k_i = k_{i-1} - 1$. Because we have only removed an element it follows that $t_i = 1$. We reduce the formula using these substitutions.
sawine@8
    30
\begin{align*}
sawine@8
    31
a_i &= |2k_i - s_i| - |2k_{i-1} - s_{i-1}| + t_i\\
sawine@8
    32
&= |2k_i - s_i| - |2k_i + 2 - s_i| + 1\\
sawine@8
    33
\end{align*}
sawine@7
    34
Now we look for the minimum and maximum value of the above formula. We choose the obvious values for $k_i$ which are within valid range.
sawine@8
    35
\begin{align*}
sawine@8
    36
(k_i = \frac{s_i}{2}) \implies a_i &= |s_i - s_i| - |s_i - s_i + 2| + 1\\
sawine@8
    37
&= 0 - 2 + 1 = -1\\
sawine@8
    38
(k_i = \frac{s_i}{2} - 1) \implies a_i &= |s_i - 2 - s_i| - |s_i - 2 - s_i + 2| + 1\\
sawine@8
    39
&= 2 - 0 + 1 = 3\\
sawine@8
    40
\implies &-1 \leq a_i \leq 3\\
sawine@8
    41
\end{align*}
sawine@8
    42
\newpage
sawine@7
    43
\subsection*{case 2 (contraction required)}
sawine@7
    44
Since there was a contraction we know that $s_i = \frac{2}{3}s_{i-1}$ and it follows that $k_i = \frac{1}{3}s_{i-1} - 1$. Since we have deleted an element we know that $k_i = k_{i-1} - 1$. Because we have removed an element and additionally copied all previously contained elements it follows that $t_i = \frac{1}{3}s_{i-1} + 1$. We reduce the formula again using these substitutions.
sawine@8
    45
\begin{align*}
sawine@8
    46
a_i &= |2k_i - s_i| - |2k_{i-1} - s_{i-1}| + t_i\\
sawine@8
    47
&= |2k_i - \frac{2}{3}s_{i-1}| - |2k_i + 2 - s_{i-1}| + t_i\\
sawine@8
    48
&= |\frac{2}{3}s_{i-1} - 2 - \frac{2}{3}s_{i-1}| - |\frac{2}{3}s_{i-1} - 2 + 2 - s_{i-1}| + \frac{1}{3}s_{i-1} + 1\\
sawine@8
    49
&= |-2| - |-\frac{1}{3}s_{i-1}| + \frac{1}{3}s_{i-1} + 1\\
sawine@8
    50
(\text{since } s_{i-1} > 0) \implies a_i &= 2 - \frac{1}{3}s_{i-1} + \frac{1}{3}s_{i-1} + 1\\
sawine@8
    51
&= 2 + 1 = 3 \leq 3\\
sawine@8
    52
\end{align*}
sawine@7
    53
By calculating the amortized costs for both Table-Delete cases, we have have shown that the amortized costs are bounded by constant 3. \qed
sawine@7
    54
sawine@7
    55
\section*{Exercise 6.2}
sawine@8
    56
\begin{align*}
sawine@8
    57
\alpha &= \frac{k}{s}\\
sawine@8
    58
\Phi(T) &= 
sawine@7
    59
\left\{ 
sawine@7
    60
\begin{array}{l l} 
sawine@7
    61
  2k-s & \text{if $\alpha \geq \frac{1}{2}$}\\
sawine@7
    62
  \frac{s}{2}-k & \text{if $\alpha < \frac{1}{2}$}\\
sawine@8
    63
\end{array} \right.\\
sawine@8
    64
\end{align*}
sawine@7
    65
sawine@7
    66
We show $\sum a_i \geq \sum t_i$.
sawine@8
    67
\begin{align*}
sawine@8
    68
a_i &= \Phi_i - \Phi_{i-1} + t_i\\
sawine@8
    69
\implies \sum_{i=1}^{n}a_i &= \sum_{i=1}^{n}\Phi_i - \Phi_{i-1} + t_i\\
sawine@8
    70
&= \sum_{i=1}^{n}\Phi_i - \sum_{i=0}^{n-1}\Phi_i + \sum_{i=1}^{n}t_i\\
sawine@8
    71
&= \Phi_n - \Phi_0 + \sum_{i=1}^{n}t_i\\
sawine@8
    72
\end{align*}
sawine@9
    73
By definition we know that $\Phi_0 = -1$ and since $2k-s \geq 0$ for $\alpha \geq \frac{1}{2}$ and $\frac{s}{2}-k \geq 0$ for $\alpha < \frac{1}{2}$ it follows that $\Phi_n - \Phi_0 \geq 0$.
sawine@7
    74
\[\implies \Phi_n - \Phi_0 + \sum_{i=1}^{n}t_i \geq \sum t_i\]\qed
sawine@7
    75
sawine@7
    76
\section*{Exercise 6.3}
sawine@8
    77
We show $\sum_{k=2}^{n-1}k\,lg\,k \leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2$.
sawine@8
    78
\begin{align*}
sawine@8
    79
\sum_{k=2}^{n-1}k\,lg\,k &\leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2\\
sawine@8
    80
\sum_{k=2}^{n-1}k\,lg\,k &= \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k\,lg\,k\ + \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\,lg\,k\\
sawine@8
    81
\sum_{k=2}^{n-1}k\,lg\,k &\leq \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k\,lg\,\lceil\frac{n}{2}\rceil + \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\,lg\,n\\
sawine@8
    82
&= lg\,\lceil \frac{n}{2} \rceil \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k + lg\,n \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\\
sawine@8
    83
&= (lg\,n - lg\,2) \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k + lg\,n \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\\
sawine@8
    84
&= lg\,n \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k - \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k + lg\,n \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\\
sawine@8
    85
&= lg\,n \sum_{k=2}^{n-1}k - \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k\\
sawine@8
    86
&\leq lg\,n \frac{(n-1)(n-2)}{2} - \frac{(\frac{n}{2} - 1)(\frac{n}{2} - 2)}{2}\\
sawine@8
    87
&= \frac{1}{2}lg\,n (n^2 - 3n + 2) - \frac{1}{2}(\frac{n^2}{4} - n - \frac{n}{2} + 2)\\
sawine@8
    88
&= \frac{1}{2}n^2\,lg\,n - \frac{3}{2}n\,lg\,n + lg\,n - \frac{1}{2}(\frac{n^2}{4} - n - \frac{n}{2} + 2)\\
sawine@8
    89
&= \frac{1}{2}n^2\,lg\,n - \frac{3}{2}n\,lg\,n + lg\,n - \frac{1}{8}n^2 + \frac{n}{2} + \frac{n}{4} - 1\\
sawine@8
    90
&= \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{2}n\,lg\,n + \frac{3}{4}n - 1\\
sawine@8
    91
&\leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{2}n + \frac{3}{4}n - 1\\
sawine@8
    92
&= \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{4}n - 1\\
sawine@8
    93
\implies \sum_{k=2}^{n-1}k\,lg\,k &\leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{4}n - 1 \leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2\\
sawine@8
    94
\implies &\frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{4}n - 1 \leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2\\
sawine@8
    95
\iff &lg\,n - \frac{3}{4}n - 1 \leq 0\\
sawine@8
    96
\text{since } \forall{n \in \mathbb{N}}:\, lg\,n - \frac{3}{4}n \leq 0 &\implies \, lg\,n - \frac{3}{4}n - 1 \leq -1 \leq 0\\
sawine@8
    97
\end{align*}
sawine@8
    98
\qed
sawine@7
    99
\end{document}