tex/theory1_ex8.tex
author Eugen Sawin <sawine@me73.com>
Wed, 13 Jul 2011 01:26:19 +0200
changeset 11 df83621781e1
child 12 847768226d25
permissions -rw-r--r--
8.2
sawine@11
     1
\documentclass[a4paper, 10pt, pagesize, smallheadings]{article}  
sawine@11
     2
\usepackage{graphicx}
sawine@11
     3
%\usepackage[latin1]{inputenc}
sawine@11
     4
\usepackage{amsmath, amsthm, amssymb}
sawine@11
     5
\usepackage{typearea}
sawine@11
     6
\usepackage{algorithm}
sawine@11
     7
\usepackage{algorithmic}
sawine@11
     8
\usepackage{fullpage}
sawine@11
     9
\usepackage{mathtools}
sawine@11
    10
\usepackage[all]{xy}
sawine@11
    11
\title{Theory I, Sheet 8 Solution}
sawine@11
    12
\author{Eugen Sawin}
sawine@11
    13
\renewcommand{\familydefault}{\sfdefault}
sawine@11
    14
\newcommand{\Pos}{\mathcal{P}os}
sawine@11
    15
\include{pythonlisting}
sawine@11
    16
sawine@11
    17
\pagestyle{empty}
sawine@11
    18
\begin{document}
sawine@11
    19
\maketitle
sawine@11
    20
sawine@11
    21
\section*{Exercise 8.1}
sawine@11
    22
Let $s, t \in T(\Sigma, X)$ be terms over $X$ and $p, q$ be strings over the natural numbers. We provide proofs by induction.
sawine@11
    23
\subsection*{1. $pq \in \Pos(s) \implies p \in \Pos(s)$ }
sawine@11
    24
$(IH): pq \in \Pos(s) \implies p \in \Pos(s)$\\\\
sawine@11
    25
\emph{Base case:}\\
sawine@11
    26
From $s \in X$ or $s \in \Sigma^{(0)}$ follows $\Pos(s) = \{\epsilon\}$.\\
sawine@11
    27
Trivially it follows that $pq \in \Pos(s) \iff pq = \epsilon$ and $pq \in \Pos(s) \implies p \in \Pos(s)$ with $pq \notin \Pos(s) \lor pq = p = \epsilon$. \\ 
sawine@11
    28
sawine@11
    29
\noindent \emph{Inductive case:}\\
sawine@11
    30
Let $s = f(t_1, ...,t_n) \in T(\Sigma, X)$ it follows $\Pos(s) = \{\epsilon\} \cup \bigcup_{i = 1}^{n}\{ip \mid p \in \Pos(t_i)\}$.\\
sawine@11
    31
\begin{align*}
sawine@11
    32
pq \in \Pos(s) &\implies p \in \Pos(s)\\ 
sawine@11
    33
\iff pq \in \{\epsilon\} \cup \bigcup_{i = 1}^{n}\{ip \mid p \in \Pos(t_i)\} &\implies p \in \{\epsilon\} \cup \bigcup_{i = 1}^{n}\{ip \mid p \in \Pos(t_i)\}\\
sawine@11
    34
\end{align*}
sawine@11
    35
sawine@11
    36
\section*{Exercise 8.2}
sawine@11
    37
\subsection*{1. $t = \neg (x \land (\top \lor y)), \sigma = \{x \mapsto \bot, y \mapsto \top \land x\}, \tau = \{z \mapsto \top, x \mapsto \top\}$}
sawine@11
    38
\begin{align*}
sawine@11
    39
\sigma(t) &= \neg (\bot \land (\top \lor ( \top \land x)))\\
sawine@11
    40
\tau \sigma(t) &= \tau(\neg (\bot \land (\top \lor ( \top \land x)))) = \neg (\bot \land (\top \lor (\top \land \top)))\\
sawine@11
    41
\end{align*}
sawine@11
    42
sawine@11
    43
\subsection*{2. $t = \neg(\top \land (\bot \lor y)), s = \neg(x \land (\bot \lor (x \land \bot)))$}
sawine@11
    44
\[\sigma(t) = \sigma(s) \text{ with } \sigma = \{x \mapsto \top, y \mapsto \top \land \bot \} \]
sawine@11
    45
sawine@11
    46
\subsection*{3.}
sawine@11
    47
Substitution composition is \emph{not} commutative, we give a counterexample.
sawine@11
    48
Let $t = x$, $\sigma = \{x \mapsto \bot\}$ and $\tau = \{x \mapsto \top\}$, it follows:
sawine@11
    49
\[\tau\sigma(t) = \bot\]
sawine@11
    50
\[\sigma\tau(t) = \top\]
sawine@11
    51
We see that $\tau\sigma(t) \neq \sigma\tau(t)$.
sawine@11
    52
sawine@11
    53
\end{document}