tex/theory1_ex6.tex
author Eugen Sawin <sawine@me73.com>
Mon, 04 Jul 2011 16:41:40 +0200
changeset 9 15594952470f
parent 8 862ab5c7c6df
permissions -rw-r--r--
KMP.
     1 \documentclass[a4paper, 10pt, pagesize, smallheadings]{article}  
     2 \usepackage{graphicx}
     3 %\usepackage[latin1]{inputenc}
     4 \usepackage{amsmath, amsthm, amssymb}
     5 \usepackage{typearea}
     6 \usepackage{algorithm}
     7 \usepackage{algorithmic}
     8 \usepackage{fullpage}
     9 \usepackage{mathtools}
    10 \usepackage[all]{xy}
    11 \title{Theory I, Sheet 6 Solution}
    12 \author{Eugen Sawin}
    13 \renewcommand{\familydefault}{\sfdefault}
    14 \include{pythonlisting}
    15 
    16 \pagestyle{empty}
    17 \begin{document}
    18 \maketitle
    19 
    20 \section*{Exercise 6.1}
    21 \begin{align*}
    22 \Phi(T) &= |2 \cdot num - size|\\
    23 a_i &= \Phi_i - \Phi_{i-1} + t_i\\
    24 a_i &= |2k_i - s_i| - |2k_{i-1} - s_{i-1}| + t_i\\
    25 \end{align*}
    26 We calculate the amortized costs for the two distinct cases.
    27 
    28 \subsection*{case 1 (no contraction required)}
    29 Since there was no contraction we know that $s_i = s_{i-1}$ and it follows that $\frac{1}{3}s_i \leq k_i \leq s_i - 1$. Since we have deleted an element we know that $k_i = k_{i-1} - 1$. Because we have only removed an element it follows that $t_i = 1$. We reduce the formula using these substitutions.
    30 \begin{align*}
    31 a_i &= |2k_i - s_i| - |2k_{i-1} - s_{i-1}| + t_i\\
    32 &= |2k_i - s_i| - |2k_i + 2 - s_i| + 1\\
    33 \end{align*}
    34 Now we look for the minimum and maximum value of the above formula. We choose the obvious values for $k_i$ which are within valid range.
    35 \begin{align*}
    36 (k_i = \frac{s_i}{2}) \implies a_i &= |s_i - s_i| - |s_i - s_i + 2| + 1\\
    37 &= 0 - 2 + 1 = -1\\
    38 (k_i = \frac{s_i}{2} - 1) \implies a_i &= |s_i - 2 - s_i| - |s_i - 2 - s_i + 2| + 1\\
    39 &= 2 - 0 + 1 = 3\\
    40 \implies &-1 \leq a_i \leq 3\\
    41 \end{align*}
    42 \newpage
    43 \subsection*{case 2 (contraction required)}
    44 Since there was a contraction we know that $s_i = \frac{2}{3}s_{i-1}$ and it follows that $k_i = \frac{1}{3}s_{i-1} - 1$. Since we have deleted an element we know that $k_i = k_{i-1} - 1$. Because we have removed an element and additionally copied all previously contained elements it follows that $t_i = \frac{1}{3}s_{i-1} + 1$. We reduce the formula again using these substitutions.
    45 \begin{align*}
    46 a_i &= |2k_i - s_i| - |2k_{i-1} - s_{i-1}| + t_i\\
    47 &= |2k_i - \frac{2}{3}s_{i-1}| - |2k_i + 2 - s_{i-1}| + t_i\\
    48 &= |\frac{2}{3}s_{i-1} - 2 - \frac{2}{3}s_{i-1}| - |\frac{2}{3}s_{i-1} - 2 + 2 - s_{i-1}| + \frac{1}{3}s_{i-1} + 1\\
    49 &= |-2| - |-\frac{1}{3}s_{i-1}| + \frac{1}{3}s_{i-1} + 1\\
    50 (\text{since } s_{i-1} > 0) \implies a_i &= 2 - \frac{1}{3}s_{i-1} + \frac{1}{3}s_{i-1} + 1\\
    51 &= 2 + 1 = 3 \leq 3\\
    52 \end{align*}
    53 By calculating the amortized costs for both Table-Delete cases, we have have shown that the amortized costs are bounded by constant 3. \qed
    54 
    55 \section*{Exercise 6.2}
    56 \begin{align*}
    57 \alpha &= \frac{k}{s}\\
    58 \Phi(T) &= 
    59 \left\{ 
    60 \begin{array}{l l} 
    61   2k-s & \text{if $\alpha \geq \frac{1}{2}$}\\
    62   \frac{s}{2}-k & \text{if $\alpha < \frac{1}{2}$}\\
    63 \end{array} \right.\\
    64 \end{align*}
    65 
    66 We show $\sum a_i \geq \sum t_i$.
    67 \begin{align*}
    68 a_i &= \Phi_i - \Phi_{i-1} + t_i\\
    69 \implies \sum_{i=1}^{n}a_i &= \sum_{i=1}^{n}\Phi_i - \Phi_{i-1} + t_i\\
    70 &= \sum_{i=1}^{n}\Phi_i - \sum_{i=0}^{n-1}\Phi_i + \sum_{i=1}^{n}t_i\\
    71 &= \Phi_n - \Phi_0 + \sum_{i=1}^{n}t_i\\
    72 \end{align*}
    73 By definition we know that $\Phi_0 = -1$ and since $2k-s \geq 0$ for $\alpha \geq \frac{1}{2}$ and $\frac{s}{2}-k \geq 0$ for $\alpha < \frac{1}{2}$ it follows that $\Phi_n - \Phi_0 \geq 0$.
    74 \[\implies \Phi_n - \Phi_0 + \sum_{i=1}^{n}t_i \geq \sum t_i\]\qed
    75 
    76 \section*{Exercise 6.3}
    77 We show $\sum_{k=2}^{n-1}k\,lg\,k \leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2$.
    78 \begin{align*}
    79 \sum_{k=2}^{n-1}k\,lg\,k &\leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2\\
    80 \sum_{k=2}^{n-1}k\,lg\,k &= \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k\,lg\,k\ + \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\,lg\,k\\
    81 \sum_{k=2}^{n-1}k\,lg\,k &\leq \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k\,lg\,\lceil\frac{n}{2}\rceil + \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\,lg\,n\\
    82 &= lg\,\lceil \frac{n}{2} \rceil \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k + lg\,n \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\\
    83 &= (lg\,n - lg\,2) \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k + lg\,n \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\\
    84 &= lg\,n \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k - \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k + lg\,n \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\\
    85 &= lg\,n \sum_{k=2}^{n-1}k - \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k\\
    86 &\leq lg\,n \frac{(n-1)(n-2)}{2} - \frac{(\frac{n}{2} - 1)(\frac{n}{2} - 2)}{2}\\
    87 &= \frac{1}{2}lg\,n (n^2 - 3n + 2) - \frac{1}{2}(\frac{n^2}{4} - n - \frac{n}{2} + 2)\\
    88 &= \frac{1}{2}n^2\,lg\,n - \frac{3}{2}n\,lg\,n + lg\,n - \frac{1}{2}(\frac{n^2}{4} - n - \frac{n}{2} + 2)\\
    89 &= \frac{1}{2}n^2\,lg\,n - \frac{3}{2}n\,lg\,n + lg\,n - \frac{1}{8}n^2 + \frac{n}{2} + \frac{n}{4} - 1\\
    90 &= \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{2}n\,lg\,n + \frac{3}{4}n - 1\\
    91 &\leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{2}n + \frac{3}{4}n - 1\\
    92 &= \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{4}n - 1\\
    93 \implies \sum_{k=2}^{n-1}k\,lg\,k &\leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{4}n - 1 \leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2\\
    94 \implies &\frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{4}n - 1 \leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2\\
    95 \iff &lg\,n - \frac{3}{4}n - 1 \leq 0\\
    96 \text{since } \forall{n \in \mathbb{N}}:\, lg\,n - \frac{3}{4}n \leq 0 &\implies \, lg\,n - \frac{3}{4}n - 1 \leq -1 \leq 0\\
    97 \end{align*}
    98 \qed
    99 \end{document}