# HG changeset patch # User Eugen Sawin # Date 1309129293 -7200 # Node ID 862ab5c7c6df997791bdac15b365af1678eef35c # Parent a20bf59d17757e15ce9022556537d344f202a143 Final exercise 6. diff -r a20bf59d1775 -r 862ab5c7c6df tex/theory1_ex6.tex --- a/tex/theory1_ex6.tex Sun Jun 26 19:46:12 2011 +0200 +++ b/tex/theory1_ex6.tex Mon Jun 27 01:01:33 2011 +0200 @@ -18,58 +18,82 @@ \maketitle \section*{Exercise 6.1} -\[\Phi(T) = |2 \cdot num - size|\] -\[a_i = \Phi_i - \Phi_{i-1} + t_i\] -\[a_i = |2k_i - s_i| - |2k_{i-1} - s_{i-1}| + t_i\] +\begin{align*} +\Phi(T) &= |2 \cdot num - size|\\ +a_i &= \Phi_i - \Phi_{i-1} + t_i\\ +a_i &= |2k_i - s_i| - |2k_{i-1} - s_{i-1}| + t_i\\ +\end{align*} We calculate the amortized costs for the two distinct cases. \subsection*{case 1 (no contraction required)} Since there was no contraction we know that $s_i = s_{i-1}$ and it follows that $\frac{1}{3}s_i \leq k_i \leq s_i - 1$. Since we have deleted an element we know that $k_i = k_{i-1} - 1$. Because we have only removed an element it follows that $t_i = 1$. We reduce the formula using these substitutions. -\[a_i = |2k_i - s_i| - |2k_{i-1} - s_{i-1}| + t_i\] -\[= |2k_i - s_i| - |2k_i + 2 - s_i| + 1\] +\begin{align*} +a_i &= |2k_i - s_i| - |2k_{i-1} - s_{i-1}| + t_i\\ +&= |2k_i - s_i| - |2k_i + 2 - s_i| + 1\\ +\end{align*} Now we look for the minimum and maximum value of the above formula. We choose the obvious values for $k_i$ which are within valid range. -\[(k_i = \frac{s_i}{2}) \implies a_i = |s_i - s_i| - |s_i - s_i + 2| + 1\] -\[= 0 - 2 + 1 = -1\] - -\[(k_i = \frac{s_i}{2} - 1) \implies a_i = |s_i - 2 - s_i| - |s_i - 2 - s_i + 2| + 1\] -\[= 2 - 0 + 1 = 3\] - -\[\implies -1 \leq a_i \leq 3\] +\begin{align*} +(k_i = \frac{s_i}{2}) \implies a_i &= |s_i - s_i| - |s_i - s_i + 2| + 1\\ +&= 0 - 2 + 1 = -1\\ +(k_i = \frac{s_i}{2} - 1) \implies a_i &= |s_i - 2 - s_i| - |s_i - 2 - s_i + 2| + 1\\ +&= 2 - 0 + 1 = 3\\ +\implies &-1 \leq a_i \leq 3\\ +\end{align*} +\newpage \subsection*{case 2 (contraction required)} Since there was a contraction we know that $s_i = \frac{2}{3}s_{i-1}$ and it follows that $k_i = \frac{1}{3}s_{i-1} - 1$. Since we have deleted an element we know that $k_i = k_{i-1} - 1$. Because we have removed an element and additionally copied all previously contained elements it follows that $t_i = \frac{1}{3}s_{i-1} + 1$. We reduce the formula again using these substitutions. -\[a_i = |2k_i - s_i| - |2k_{i-1} - s_{i-1}| + t_i\] -\[= |2k_i - \frac{2}{3}s_{i-1}| - |2k_i + 2 - s_{i-1}| + t_i\] -\[= |\frac{2}{3}s_{i-1} - 2 - \frac{2}{3}s_{i-1}| - |\frac{2}{3}s_{i-1} - 2 + 2 - s_{i-1}| + \frac{1}{3}s_{i-1} + 1\] -\[= |-2| - |-\frac{1}{3}s_{i-1}| + \frac{1}{3}s_{i-1} + 1\] -\[(\text{since } s_{i-1} > 0) \implies a_i = 2 - \frac{1}{3}s_{i-1} + \frac{1}{3}s_{i-1} + 1\] -\[= 2 + 1 = 3 \leq 3\] +\begin{align*} +a_i &= |2k_i - s_i| - |2k_{i-1} - s_{i-1}| + t_i\\ +&= |2k_i - \frac{2}{3}s_{i-1}| - |2k_i + 2 - s_{i-1}| + t_i\\ +&= |\frac{2}{3}s_{i-1} - 2 - \frac{2}{3}s_{i-1}| - |\frac{2}{3}s_{i-1} - 2 + 2 - s_{i-1}| + \frac{1}{3}s_{i-1} + 1\\ +&= |-2| - |-\frac{1}{3}s_{i-1}| + \frac{1}{3}s_{i-1} + 1\\ +(\text{since } s_{i-1} > 0) \implies a_i &= 2 - \frac{1}{3}s_{i-1} + \frac{1}{3}s_{i-1} + 1\\ +&= 2 + 1 = 3 \leq 3\\ +\end{align*} By calculating the amortized costs for both Table-Delete cases, we have have shown that the amortized costs are bounded by constant 3. \qed \section*{Exercise 6.2} -\[\alpha = \frac{k}{s}\] -\[\Phi(T) = +\begin{align*} +\alpha &= \frac{k}{s}\\ +\Phi(T) &= \left\{ \begin{array}{l l} 2k-s & \text{if $\alpha \geq \frac{1}{2}$}\\ \frac{s}{2}-k & \text{if $\alpha < \frac{1}{2}$}\\ -\end{array} \right.\] +\end{array} \right.\\ +\end{align*} We show $\sum a_i \geq \sum t_i$. -\[a_i = \Phi_i - \Phi_{i-1} + t_i\] -\[\implies \sum_{i=1}^{n}a_i = \sum_{i=1}^{n}\Phi_i - \Phi_{i-1} + t_i\] -\[= \sum_{i=1}^{n}\Phi_i - \sum_{i=0}^{n-1}\Phi_i + \sum_{i=1}^{n}t_i\] -\[= \Phi_n - \Phi_0 + \sum_{i=1}^{n}t_i\] - +\begin{align*} +a_i &= \Phi_i - \Phi_{i-1} + t_i\\ +\implies \sum_{i=1}^{n}a_i &= \sum_{i=1}^{n}\Phi_i - \Phi_{i-1} + t_i\\ +&= \sum_{i=1}^{n}\Phi_i - \sum_{i=0}^{n-1}\Phi_i + \sum_{i=1}^{n}t_i\\ +&= \Phi_n - \Phi_0 + \sum_{i=1}^{n}t_i\\ +\end{align*} By definition we know that $\Phi_0 = -1$ and since $2k-s \geq 0$ for $\alpha \geq \frac{1}{2}$ and $\frac{s}{2}-k \geq 0$ for $\alpha < \frac{1}{2}$ it follows that $\Phi_n - \Phi_0 >= 0$. \[\implies \Phi_n - \Phi_0 + \sum_{i=1}^{n}t_i \geq \sum t_i\]\qed \section*{Exercise 6.3} -We show -\[\sum_{k=2}^{n-1}k\,lg\,k \leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2\] -\[\sum_{k=2}^{n-1}k\,lg\,k = \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k\,lg\,k\ + \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\,lg\,k\] -\[\leq \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k\,lg\,\lceil \frac{n}{2} \rceil + \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\,lg\,n\] -\[= lg\,\lceil \frac{n}{2} \rceil \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k + lg\,n \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\] -\[= (lg\,n - lg\,2) \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k + lg\,n \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\] -\[= lg\,n \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k - \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k + lg\,n \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\] -\[= lg\,n \frac{(n-1)(n-2)}{2} - \] +We show $\sum_{k=2}^{n-1}k\,lg\,k \leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2$. +\begin{align*} +\sum_{k=2}^{n-1}k\,lg\,k &\leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2\\ +\sum_{k=2}^{n-1}k\,lg\,k &= \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k\,lg\,k\ + \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\,lg\,k\\ +\sum_{k=2}^{n-1}k\,lg\,k &\leq \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k\,lg\,\lceil\frac{n}{2}\rceil + \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\,lg\,n\\ +&= lg\,\lceil \frac{n}{2} \rceil \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k + lg\,n \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\\ +&= (lg\,n - lg\,2) \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k + lg\,n \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\\ +&= lg\,n \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k - \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k + lg\,n \sum_{k=\lceil \frac{n}{2} \rceil}^{n-1}k\\ +&= lg\,n \sum_{k=2}^{n-1}k - \sum_{k=2}^{\lceil \frac{n}{2} \rceil - 1}k\\ +&\leq lg\,n \frac{(n-1)(n-2)}{2} - \frac{(\frac{n}{2} - 1)(\frac{n}{2} - 2)}{2}\\ +&= \frac{1}{2}lg\,n (n^2 - 3n + 2) - \frac{1}{2}(\frac{n^2}{4} - n - \frac{n}{2} + 2)\\ +&= \frac{1}{2}n^2\,lg\,n - \frac{3}{2}n\,lg\,n + lg\,n - \frac{1}{2}(\frac{n^2}{4} - n - \frac{n}{2} + 2)\\ +&= \frac{1}{2}n^2\,lg\,n - \frac{3}{2}n\,lg\,n + lg\,n - \frac{1}{8}n^2 + \frac{n}{2} + \frac{n}{4} - 1\\ +&= \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{2}n\,lg\,n + \frac{3}{4}n - 1\\ +&\leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{2}n + \frac{3}{4}n - 1\\ +&= \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{4}n - 1\\ +\implies \sum_{k=2}^{n-1}k\,lg\,k &\leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{4}n - 1 \leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2\\ +\implies &\frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2 + lg\,n - \frac{3}{4}n - 1 \leq \frac{1}{2}n^2\,lg\,n - \frac{1}{8}n^2\\ +\iff &lg\,n - \frac{3}{4}n - 1 \leq 0\\ +\text{since } \forall{n \in \mathbb{N}}:\, lg\,n - \frac{3}{4}n \leq 0 &\implies \, lg\,n - \frac{3}{4}n - 1 \leq -1 \leq 0\\ +\end{align*} +\qed \end{document}